• 제목/요약/키워드: IM Control

검색결과 1,798건 처리시간 0.037초

Input-Output Feedback Linearization of Sensorless IM Drives with Stator and Rotor Resistances Estimation

  • Hajian, Masood;Soltani, Jafar;Markadeh, Gholamreza Arab;Hosseinnia, Saeed
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.654-666
    • /
    • 2009
  • Direct torque control (DTC) of induction machines (IM) is a well-known strategy of these drives control which has a fast dynamic and a good tracking response. In this paper a nonlinear DTC of speed sensorless IM drives is presented which is based on input-output feedback linearization control theory. The IM model includes iron losses using a speed dependent shunt resistance which is determined through some effective experiments. A stator flux vector is estimated through a simple integrator based on stator voltage equations in the stationary frame. A novel method is introduced for DC offset compensation which is a major problem of AC machines, especially at low speeds. Rotor speed is also determined using a rotor flux sliding-mode (SM) observer which is capable of rotor flux space vector and rotor speed simultaneous estimation. In addition, stator and rotor resistances are estimated using a simple but effective recursive least squares (RLS) method combined with the so-called SM observer. The proposed control idea is experimentally implemented in real time using a FPGA board synchronized with a personal computer (PC). Simulation and experimental results are presented to show the capability and validity of the proposed control method.

유도전동기 속도제어를 위한 비선형 비례적분 제어기 설계 (Design of Nonlinear PI Controller for velocity Control of IM)

  • 오태석;최준배;김일환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.47-49
    • /
    • 2005
  • This paper presents a robust speed control method of induction motors(IM) using a Non-linear PI controller(NPI), NPI is high gain controller in region of small error, and low gain controller in region of large error. so in steady state, system will be robust against variation of load torque. The simulation and experiment results confirm the validity of proposed control scheme.

  • PDF

정속도 운전을 위한 유도 전동기 센서리스 벡터제어 시스템 모델링 (Sensorless Field Oriented control Modeling for Constant Speed Induction motor)

  • 황재호;이학주;안재황;성세진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.376-379
    • /
    • 1998
  • This paper be described the constant speed control of induction motor for high performance. Vector control system which is used the stator current, voltage of IM is modeled without the speed, flux sensor. The proposed control system be simulated using Matlab with Simulink. Results include the fast response of the constant speed and torque in proposed system. For high performance, this paper presents the robust characteristics of field oriented control system for IM.

  • PDF

Fault-Tolerant Control of Five-Phase Induction Motor Under Single-Phase Open

  • Kong, Wubin;Huang, Jin;Kang, Min;Li, Bingnan;Zhao, Lihang
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.899-907
    • /
    • 2014
  • This paper deals with fault-tolerant control of five-phase induction motor (IM) drives under single-phase open. By exploiting a decoupled model for five-phase IM under fault, the indirect field-oriented control ensures that electromagnetic torque oscillations are reduced by particular magnitude ratio currents. The control techniques are developed by the third harmonic current injection, in order to improve electromagnetic torque density. Furthermore, Proportional Resonant (PR) regulator is adopted to realize excellent current tracking performance in the phase frame, compared with Proportional Integral (PI) and hysteresis regulators. The analysis and experimental results confirm the validity of fault-tolerant control under single-phase open.

Calculation of Leakage Inductance of Integrated Magnetic Transformer with Separated Secondary Winding Used in ZVS PSFB Converter

  • Tian, Jiashen;Zhang, Yiming;Ren, Xiguo;Wang, Xuhong;Tao, Haijun
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.644-651
    • /
    • 2016
  • A novel zero voltage switching (ZVS) phase shift full bridge (PSFB) converter used in geophysical exploration is proposed in this paper. To extend the ZVS ranges and increase power density of the converter, external inductor acting as leakage inductance is applied and integrated into the integrated magnetic (IM) transformer with separated secondary winding. Moreover, the loss of ZVS PSFB converter is also decreased. Besides, the analysis and accurate prediction methodology of the leakage inductance of the IM transformer are proposed, which are based on magnetic energy and Lebedev. Finally, to verify the accuracy of analysis and methodology, the experimental and finite element analysis (FEA) results of IM transformer and 40 kW converter prototypes are given.

3차 상호변조왜곡성분의 독립적인 조절을 위한 새로운 전치왜곡기 (New Analog Predistorter for Independent Control of IM3 Components)

  • 이용섭;이문우;정성우;정윤하
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.159-160
    • /
    • 2007
  • Two analog predsitorters (PDs) using the mixing operation are proposed to compensate for the memory effects of the power amplifier and then significantly cancel IM3 components with the independent control of IM3 terms. In the first PD, IM3 terms are generated by using mixing operation of low frequency terms. In the second PD, the double mixing operation of the fundamental components is used. For a two-tone signal with 20-MHz tone spacing, the notable IM3 suppression is achieved over a whole output power range.

  • PDF

A Five-Phase Induction Motor Speed Control System Excluding Effects of 3rd Current Harmonics Component

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.294-303
    • /
    • 2011
  • In this paper an effective five-phase induction motor (IM) and its drive methods are proposed. Due to the additional degrees of freedom, the five-phase IM drive presents unique characteristics for enhancing the torque producing capability of the motor. Also the five-phase motor drives possess many other advantages when compared to traditional three-phase motor drives. Some of these advantages include, reducing the amplitude and increasing the frequency of the torque pulsation, reducing the amplitude of the current without increasing the voltage per phase and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated winding, the produced back electromotive force (EMF) is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus the third harmonic of the currents. For demonstrating the superior performance of the proposed five-phase IM, the motors are also analyzed on the synchronously rotating reference frame. To supply trapezoidal current waveform and to exclude the effect of the $3^{rd}$ harmonic current, a new control stratagem is proposed. The proposed control method is based on direct torque control (DTC) and rotor flux oriented control (RFOC) of the five-phase IM drives. It is able to reduce the acoustical noise, the torque, the flux, the current, and the speed pulsations during the steady state. The DTC transient merits are preserved, while a better quality steady-state performance is produced in the five phase motor drive for a wide speed range. Experimental results clearly demonstrated a more dynamic steady state performance with the proposed control system.

A dominant vibration mode-based scalar ground motion intensity measure for single-layer reticulated domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.245-264
    • /
    • 2016
  • A suitable ground motion intensity measure (IM) plays a crucial role in the seismic performance assessment of a structure. In this paper, we introduce a scalar IM for use in evaluating the seismic response of single-layer reticulated domes. This IM is defined as the weighted geometric mean of the spectral acceleration ordinates at the periods of the dominant vibration modes of the structure considered, and the modal strain energy ratio of each dominant vibration mode is the corresponding weight. Its applicability and superiority to 11 other existing IMs are firstly investigated in terms of correlation with the nonlinear seismic response, efficiency and sufficiency using the results of incremental dynamic analyses which are performed for a typical single-layer reticulated dome. The hazard computability of this newly proposed IM is also briefly discussed and illustrated. A conclusion is drawn that this dominant vibration mode-based scalar IM has the characteristics of strong correlation, high efficiency, good sufficiency as well as hazard computability, and thereby is appropriate for use in the prediction of seismic response of single-layer reticulated domes.

과전류 부하에서 5상 농형 유도전동기의 정수 특성 (Parameters Estimation Characteristics of Five-Phase Squirrel-Cage Induction Motor within Over Current Load)

  • 김민회
    • 조명전기설비학회논문지
    • /
    • 제29권7호
    • /
    • pp.38-46
    • /
    • 2015
  • This paper propose a variable parameter estimations for variable over current load of five-phase squirrel-cage induction motor(IM) to servo control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, torque command of current components, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental within variable over current load at rated input frequency. There are results of stator winding measurement, no-load test, locked-rotor test, variable over current load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.

주파수 변화에 따른 5상 농형 유도전동기의 정수 추정 (Parameters Estimation of Five-Phase Squirrel-Cage Induction Motor in Changing Variable Frequency)

  • 김민희
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.241-247
    • /
    • 2014
  • This paper propose a variable parameter estimations of five-phase squirrel-cage induction motor(IM) for speed control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental of variable input power frequency. There are results of stator winding test, no-load test, locked-rotor test, variable actual load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.