• 제목/요약/키워드: IL-4 receptor

검색결과 430건 처리시간 0.029초

Melittin의 전립선암세포 증식에 대한 억제 효과 (The Inhibitory Effects of Melittin on Human Prostate Cancer Cell PC-3 in vivo and in vitro)

  • 윤종일;송호섭
    • Journal of Acupuncture Research
    • /
    • 제24권2호
    • /
    • pp.51-61
    • /
    • 2007
  • 목적 : 이 연구는 봉독의 주요 성분인 낮은 농도의 melittin이 in vitro에서 세포자멸사 관련 단백질과 전립 선암세포 PC-3 증식 관련 수용체의 발현 조절을 통하여 세포자멸사(Apoptosis)를 유도하는지 in vivo에서 또한 전립선 암세포주인 PC-3 세포의 성장을 억제하는지 살펴보고자 하였다. 방법 : Melittin을 처리한 후 전립선암세포 PC-3의 성장억제를 관찰하기 위해 WST-l assay와 morphology analysis를 시행하였고, 세포자멸사 관련 MAP kinase 계열의 대표인 ERK1/2과 전립선암세포 증식관련 수용체인 PDGF-BB receptor ${\beta}$의 활성 변화 관찰에는 western blot analysis 및 Immunofluorescence Staining , Confocal immunocytochemistry를 시행하였으며, 전립암세포의 종양형성에는 흉선을 제거한 쥐에 Tumorigenecity study를 시행하였다. 결과 : 1. PC-3 세포에서 Melittin 처리 후 세포증식이 억제되었고 세포의 형태는 세포자멸사의 특징을 나타내었다. 2. PC-3 세포에서 Melittin 처리 후 ERKl/2과 PDGF-BB receptor ${\beta}$의 활성이 억제되었다. 3. PC-3 세포에서 Melittin과 AG1296을 함께 투여시 PDGF-BB receptor ${\beta}$ 활성억제의 상승효과가 나타났다. 4. 흉선 제거 후 전립선암세포주를 이식한 쥐에서 Melittin을 피내로 주입한 결과 전립선암의 크기와 무게가 유의하게 감소하였다. 결론 : 이상의 결과는 Melittin이 ERKl/2과 PDGF BB receptor ${\beta}$의 활성 억제를 통하여 인간 전립선암세포주인 PC-3의 세포자멸사를 유발함으로써 증식억제 효과가 있음을 입증한 것이며, 이를 재확인한 생처 연구에서의 긍정적인 결과는 향후 Melittin의 전립선암 예방과 치료에 대한 효과적인 치료제 개발에 초석이 될 것으로 기대된다.

  • PDF

Potent HAT Inhibitory Effect of Aqueous Extract from Bellflower (Platycodon grandiflorum) Roots on Androgen Receptor-mediated Transcriptional Regulation

  • Lee, Yoo-Hyun;Kim, Yong-Jun;Kim, Ha-Il;Cho, Hong-Yon;Yoon, Ho-Geun
    • Food Science and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.457-462
    • /
    • 2007
  • Histone acetyltransferase (HAT) is a family of enzymes that regulate histone acetylation. Dysfunction of HAT plays a critical role in the development of cancer. Here we have screened the various plant extracts to find out the potent HAT inhibitors. The bellflower (Platycodon grandiflorum) root have exhibited approximately 30% of the inhibitory effects on HAT activity, especially p300 and CBP (CREB-binding protein) at the concentration of $100\;{\mu}g/mL$. The cell viability was decreased approximately 52% in LNCaP cell for 48 hr incubation. Furthermore, mRNA level of 3 androgen receptor target genes, PSA, NKX3.1, and TSC22 were decreased with bellflower root extract treatment ($100\;{\mu}g/mL$) in the presence of androgen. In ChIP assay, the acetylation of histone H3 and H4 in PSA promoter region was dramatically repressed by bellflower root treatment, but not TR target gene, Dl. Therefore, the potent HAT inhibitory effect of bellflower root led to the decreased transcription of AR target genes and prostate cancer cell growth with the repression of histone hyperacetylation.

수용 모델에서 화학 반응을 고려한 휘발성 유기화합물의 배출원별 기여도 추정 (Estimation of the contributions from major sources of volatile organic compounds using receptor model with chemical loss)

  • 나광삼;김용표;문일
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 1999년도 추계학술대회 논문집
    • /
    • pp.77-80
    • /
    • 1999
  • 톨루엔, m-자일렌, o-자일렌, 1,2,4-삼메틸벤젠, 에틸렌 그리고 프로필렌 등과 같은 휘발성 유기화합물 (Volatile Organic Compounds, VOC)들은 오존 생성과 직접 관련이 있으며, 벤젠은 발암 물질로 알려져 있다. 이처럼 VOC는 인체 및 환경과 밀접한 관계가 있기 때문에 이들 성분들에 대한 효율적인 관리와 저감 대책을 수립하는 일은 매우 중요하다. 이들 배출원이 수용지점(receptor site)에 얼마만큼 영향을 주는 가를 정량적으로 파악하여 인체에 미치는 영향을 최소화하는 관리 방안을 마련해야 한다.(중략)

  • PDF

Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-thiazolidinedione

  • Kim, Bok-Young;Ahn, Joong-Bok;Lee, Hong-Woo;Kim, Joon-Kyum;Shin, Jae-Soo;Kang, Sung-Kwon;Lee, Jung-Hwa;Ahn, Soon-Kil;Lee, Sang-Jun;Hong, Chung-Il;Yoon, Seung-Soo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.187.1-187.1
    • /
    • 2003
  • Type 2 diabetes is characterized by high level of blood glucose and insulin and impaired action. In recent years, the treatment of type 2 diabetes has been revolutionized with the advent of thiazolidinedione (TZD) class of molecules that ameliorate insulin resistance and thereby normalize elevated blood glucose levels. These TZDs are synthetic, high-affinity ligands of peroxisome proliferator activated receptor-gamma (PPAR${\gamma}$); a member of the nuclear receptor family that controls the expression of genes in the target tissues of insulin action. (omitted)

  • PDF

Toll-Like Receptor Gene Expression during Trichinella spiralis Infection

  • Kim, Sin;Park, Mi Kyung;Yu, Hak Sun
    • Parasites, Hosts and Diseases
    • /
    • 제53권4호
    • /
    • pp.431-438
    • /
    • 2015
  • In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T ($T_{reg}$) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and $T_{reg}$ cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/$TIRAP^{-/-}$ MEF cells, and quite substantially decreased in $TRIF^{-/-}$ MEF cells. In contrast, IL-10 and $TGF-{\beta}$ expression levels were not elevated in MyD88/$TIRAP^{-/-}$ MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and $T_{reg}$ cell mediated immune responses, although additional data are needed to convincingly prove this observation.

Time-dependent proteomic and genomic alterations in Toll-like receptor-4-activated human chondrocytes: increased expression of lamin A/C and annexins

  • Ha, Seung Hee;Kim, Hyoung Kyu;Nguyen, Thi Tuyet Anh;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.531-546
    • /
    • 2017
  • Activation of Toll-like receptor-4 (TLR-4) in articular chondrocytes increases the catabolic compartment and leads to matrix degradation during the development of osteoarthritis. In this study, we determined the proteomic and genomic alterations in human chondrocytes during lipopolysaccharide (LPS)-induced inflammation to elucidate the underlying mechanisms and consequences of TLR-4 activation. Human chondrocytes were cultured with LPS for 12, 24, and 36 h to induce TLR-4 activation. The TLR-4-induced inflammatory response was confirmed by real-time PCR analysis of increased interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor alpha ($TNF-{\alpha}$) expression levels. In TLR-4-activated chondrocytes, proteomic changes were determined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectroscopy analysis, and genomic changes were determined by microarray and gene ontology analyses. Proteomics analysis identified 26 proteins with significantly altered expression levels; these proteins were related to the cytoskeleton and oxidative stress responses. Gene ontology analysis indicated that LPS treatment altered specific functional pathways including 'chemotaxis', 'hematopoietic organ development', 'positive regulation of cell proliferation', and 'regulation of cytokine biosynthetic process'. Nine of the 26 identified proteins displayed the same increased expression patterns in both proteomics and genomics analyses. Western blot analysis confirmed the LPS-induced increases in expression levels of lamin A/C and annexins 4/5/6. In conclusion, this study identified the time-dependent genomic, proteomic, and functional pathway alterations that occur in chondrocytes during LPS-induced TLR-4 activation. These results provide valuable new insights into the underlying mechanisms that control the development and progression of osteoarthritis.

Ethyl Acetate Fraction of Adenophora triphylla var. japonica Inhibits Migration of Lewis Lung Carcinoma Cells by Suppressing Macrophage Polarization toward an M2 Phenotype

  • Park, Shin-Hyung
    • 대한약침학회지
    • /
    • 제22권4호
    • /
    • pp.253-259
    • /
    • 2019
  • Objectives: It is reported that tumor-associated macrophages (TAMs) contribute to cancer progression by promoting tumor growth and metastasis. The purpose of this study is to investigate the effect of different fractions of Adenophora triphylla var. japonica (AT) on the polarization of macrophages into the M2 phenotype, a major phenotype of TAMs. Methods: We isolated hexane, ethyl acetate, and butanol fractions from crude ethanol extract of AT. The cytotoxicity of AT in RAW264.7 cells was examined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RAW264.7 cells were polarized into the M2 phenotype by treatment with interleukin (IL)-4 and IL-13. The expression of M2 macrophage marker genes was detected by reverse transcription polymerase chain reaction (RT-PCR). The phosphorylation level of signal transducer and activator of transcription 6 (STAT6) was investigated by western blot analysis. The migration of Lewis lung carcinoma (LLC) cells was examined by transwell migration assay using conditioned media (CM) collected from RAW264.7 cells as a chemoattractant. Results: Among various fractions of AT, the ethyl acetate fraction of AT (EAT) showed the most significant suppressive effect on the mRNA expression of M2 macrophage markers, including arginase-1, interleukin (IL)-10 and mannose receptor C type 1 (MRC-1), up-regulated by treatment of IL-4 and IL-13. In addition, EAT suppressed the phosphorylation of STAT6, a critical regulator of IL-4 and IL-13-induced M2 macrophage polarization. Finally, the increased migration of Lewis lung carcinoma (LLC) cells by CM from M2-polarized RAW264.7 cells was reduced by CM from RAW264.7 cells co-treated with EAT and M2 polarization inducers. Conclusion: We demonstrated that EAT attenuated cancer cell migration through suppression of macrophage polarization toward the M2 phenotype. Additional preclinical or clinical researches are needed to evaluate its regulatory effects on macrophage polarization and anti-cancer activities.

Interleukin-2 Inhibits Secretin-Induced Bile Secretion in Cholangiocytes

  • Ko, Yoo-Seung;Hwang, Seock-Yeon;Park, Jae-Seung
    • 대한의생명과학회지
    • /
    • 제19권2호
    • /
    • pp.158-163
    • /
    • 2013
  • Cholestatic liver is associated with hepatic inflammation and elevated proinflammatory cytokines. Recent studies indicate that certain cytokines can modulate bile secretion. In the present study, we have examined the role of interleukin (IL-2) on the bile secretion by a combination of study models. To examine the relevance of IL-2 on bile secretion, the expression of IL-2 and IL-2 receptor (IL-2R) of isolated normal and bile duct ligated (BDL) rats cholangiocytes was first measured by RT-PCR. In BDL rats, the expression of IL-2 and IL-2R was significantly increased compared with normal rats. To study the effect of IL-2 on bile secretion, bile flow was measured in normal and BDL rats. At the level of cholangiocytes, secretory responses of isolated bile duct unit (IBDU)s were quantified by videomicroscopy. The administrations of IL-2 had no significant effect on basal bile secretion in normal and BDL rats. There was no significant effect of IL-2 on basal bile ductular secretion as evidenced by no significant difference in luminal area of the IBDUs perfusedwith 100 pM of IL-2 from those of albumin carrier control. However, the secretin-stimulated bile ductular secretion was significantly (P < 0.01) inhibited by $34{\pm}4%$ (normal, n = 12), $21{\pm}5.3%$ (BDL 2 wk, n = 12) and $15{\pm}5.2%$ (BDL 4 wk, n = 12) with the co-administration of IL-2. As with other cytokines, physiologically relevant concentration of IL-2 can significantly inhibit secretin-stimulated bile ductular secretion. These findings support the important roles of cytokines in modulating bile secretion and may contribute to the cholestasis seen in cholestatic liver diseases.

랫드 회장 종주근의 비아드레날린 비콜린성 신경에 의한 수축반응 (Nonadrenergic Noncholinergic Nerve-mediated Contraction of the Longitudinal Muscle of Rat Ileum)

  • 김태완;나준호;성태식;강정우;양일석;한호재
    • 대한수의학회지
    • /
    • 제43권3호
    • /
    • pp.405-414
    • /
    • 2003
  • The purpose of this study was to assess the role of tachykinins (TK) in mediating nonadrenergic noncholinergic (NANC) contractions produced by electrical field stimulation (EFS) in the longitudinal muscle of the rat ileum. In the presence of atropine ($1{\mu}M$), guanethidine ($5{\mu}M$), and L-nitroarginine (L-NNA, $200{\mu}M$), EFS (0.5ms pulse duration, 120 V, 1-20 Hz for 2 min) produced a frequency-dependent slowly-developing tonic contraction with superimposed phasic contractions ('on'-contraction) followed by off slowly-decreasing tonic and superimposed phasic contractions ('off'-contraction) of mucosa-free longitudinal oriented muscle strip. These EFS induced responses were blocked by tetrotoxin. $NK_1$ receptor selective antagonist L-732,138 strongly inhibited the EFS-induced excitatory responses. However $NK_2$ receptor selective antagonist, GR 159897 and $NK_3$ receptor selective antagonist SB 222200 did not significantly inhibited the responses. $NK_1$ receptor selective agonist [$Sar^9$,$Met(O_2)^{11}$] Substance P and $NK_2$ receptor selective agonist [${\beta}-Ala^8$]-neurokinin A (4-10) induced tonic contraction with superimposed phasic contractions of longitudinal oriented muscle strip and almost blocked by selective antagonist L-732,138 and GR 159897, respectively. But $NK_3$ receptor selective agonist senktide did not showed any effect. Nifedipine ($1{\mu}M$) abolished the contraction produced either by EFS or by the TK receptor agonists [$Sar^9$,$Met(O_2)^{11}$] Substance P or [${\beta}-Ala^8$]-neurokinin A (4-10). It is concluded that, in the longitudinal muscle of rat ileum, both $NK_1$ and $NK_2$ receptors modulated the responses to exogenous tachykinins, whereas $NK_1$ is mainly involved in NANC neuromuscular contraction.

Pathophysiological Role of TLR4 in Chronic Relapsing Itch Induced by Subcutaneous Capsaicin Injection in Neonatal Rats

  • Hee Joo Kim;Eun-Hui Lee;Yoon Hee Lim;Dongil Jeong;Heung Sik Na;YunJae Jung
    • IMMUNE NETWORK
    • /
    • 제22권2호
    • /
    • pp.20.1-20.9
    • /
    • 2022
  • Despite the high prevalence of chronic dermatitis and the accompanied intractable itch, therapeutics that specifically target itching have low efficacy. Increasing evidence suggests that TLRs contribute to immune activation and neural sensitization; however, their roles in chronic itch remain elusive. Here, we show that the RBL-2H3 mast cell line expresses TLR4 and that treatment with a TLR4 antagonist opposes the LPS dependent increase in mRNA levels of Th2 and innate cytokines. The pathological role of TLR4 activation in itching was studied in neonate rats that developed chronic itch due to neuronal damage after receiving subcutaneous capsaicin injections. Treatment with a TLR4 antagonist protected these rats with chronic itch against scratching behavior and chronic dermatitis. TLR4 antagonist treatment also restored the density of cutaneous nerve fibers and inhibited the histopathological changes that are associated with mast cell activation after capsaicin injection. Additionally, the expression of IL-1β, IL-4, IL-5, IL-10, and IL-13 mRNA in the lesional skin decreased after TLR4 antagonist treatment. Based on these data, we propose that inhibiting TLR4 alleviated itch in a rat model of chronic relapsing itch, and the reduction in the itch was associated with TLR4 signaling in mast cells and nerve fibers.