• Title/Summary/Keyword: IH-Cooker

Search Result 10, Processing Time 0.021 seconds

A Study on the Thermal Analysis of Induction Hooting Cooker with Finite Element Method (유한요소법에 의한 IH-Cooker의 열해석에 관한 연구)

  • Oh, Hong-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.80-85
    • /
    • 2003
  • Recently, induction heating cooker(IH-Cooker) is very interested for high efficiency, the quickness of heating time and the convenient regulation of heating spot. In this paper, we proposed the magneto-thermal analysis of an induction heating cooker(IH-Cooker) as an efficient design, and analyzed the magnetic fold intensity inside the axisymmetric shaped cooker using three-dimensional axisymmetric finite element method(Flux2D) and the effectual heat source was obtained by ohmic losses from eddy currents induced in the cooker. Also, we presented the temperature characteristics of the IH-Cooker according to input frequency and relative permeability in stainless parts and in aluminum parts.

Optimal Placement of Work-Coil for Improving the Performance of Heat Pressure Rice Cooker Uniformly (IH압력밥솥의 균일가열을 위한 WORK-COIL의 최적배치)

  • Roh, H.S.;Shin, D.M.;Jeon, Y.S.;Park, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2060-2063
    • /
    • 1998
  • The proper placement of work-coil is needed for heating the interior of an IH rice cooker uniformly. It is possible that the flavor of rice is better by heating it through the optimal placement of the work-coil of the IH rice cooker. This paper describes the procedure and the result of finding the optimal placement of the work-coil by analyzing the properties of the rising temperatures of the interior through Taguchi Method.

  • PDF

A Study on the Heat-Diffusion Prediction of Induction Heating JAR using Finite Element Method (유한요소법을 이용한 IH-JAR의 열확산 예측에 관한 연구)

  • 오홍석
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.8-13
    • /
    • 2002
  • Induction heating is widely used in today's industry, in operations such as metal hardening, pre-heating for forging operations, melting or cooking. In this paper, the magneto-thermal analysis of an induction heating jar(IH-JAR) was presented as an efficient design. The magnetic field intensity inside the axisymmetric shaped cooker was analyzed using three-dimensional axisymmetric finite element method(FLUX2D) and the effectual heat source was obtained by ohmic losses from eddy currents induced in the jar. The heat was calculated using the heat source and heating equation. Also, it was presented the temperature characteristics of the IH-JAR according to time and relative permeability in stainless parts and in aluminum parts.

Design of Control System for All-Metal Domestic Induction Heating Considering Temperature and Quick-Response (워킹코일 온도 및 제어 속응성을 고려한 All-Metal Domestic Induction Heating 제어 시스템 설계)

  • Park, Sang-Min;Jang, Eun-Su;Joo, Dong-Myoung;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.199-207
    • /
    • 2018
  • In this paper, an all-metal domestic induction heating (IH) system that can quickly identify ferromagnetic and non-ferromagnetic pots considering temperature changes in the working coil is designed. Load modeling is performed after analyzing the parameters of the pot material and the central misalignment of the working coil. To improve the performance and stability of the all-metal IH cooking heater, a power curve-fitting model is used to design a control system that quickly responds to load parameter fluctuations. In addition, a power control algorithm is established to compensate for the reference value by reflecting the increase in working coil temperature during heating of the non-ferromagnetic pot. The validity of the proposed control algorithm for the all-metal IH is verified by experiments using a 3.2 kW all-metal IH cooking heater.

A Study on the Temperature-Diffusion Analysis of Induction Heating Jar (Induction Heating Jar의 온도분포 해석에 관한 연구)

  • Lee, Sang-Ho;Oh, Hong-Seok;Lee, Bong-Seob;Lee, Young-Mee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.79-82
    • /
    • 2002
  • Induction heating is widely used in today's industry, in operations such as metal hardening, preheating for forging operations, melting or cooking. In this paper, it was presented the magneto-thermal analysis of an induction heating jar(IH-JAR) with the material value of the stainless and the aluminum for efficient design. The magnetic field intensity inside the axisymmetric shaped cooker was analyzed using three-dimensional axisymmetric finite element method(FEM) and the effectual heat source was obtained by ohmic losses from eddy currents induced in the jar. The heat was calculated using the heat source and heating equation. Also, it was represented the temperature characteristics of the IH-JAR according to time and relative permeability in stainless parts and in aluminum parts.

  • PDF

Resonant Network Design and Verification of Induction Cooker for Heating Nonmagnetic Vessel (비자성체 용기 가열을 위한 Induction Cooker 공진 네트워크 설계 및 검증)

  • Jang, Eun-Su;Park, Sang-Min;Joo, Dong-Myoung;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.504-509
    • /
    • 2017
  • This paper proposes a procedure for designing a resonant network for induction cookers that enables the induction heating of magnetic and non-magnetic vessels. In order to design such network, the range of operating frequency must be determined according to the material of the vessels by measuring several parameters, such as equivalent resistance and inductance, which are reflected in the working coil of the vessels. Through this process, the capacitance of the resonant capacitor is determined. The PSIM simulation and experiment results verify the feasibility of the proposed design and the heating performance of the designed resonant network.

A Study on the heat analysis of Induction Heating Jar (IH-Jar의 열해석에 관한 연구)

  • Lee, Jae-Bok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.2
    • /
    • pp.133-139
    • /
    • 2002
  • In this paper, the magneto-thermal analysis of an induction heating jar is presented as an efficient design. The magnetic field inside the axisymmetric shaped cooker is analyzed using an axisymmetric FEM(Finite Element Method) and the effectual heat source is obtained by calculation of the induction current in the Jar. The temperature distribution can be calculated using the heat source and heat equation.

  • PDF

Cost Effective Quasi-Resonant Soft Switching PWM High Frequency Inverter With Minimum Circuit Components for Consumer IH Cooker and Steamer

  • Sugimura, Hisayuki;Eid, Ahmad-M.;Nakaoka, M.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.134-139
    • /
    • 2005
  • This paper presents a cost effective quasi-resonant soft-switching PWM high frequency inverter with minimum circuit components. This inverter can achieve wider soft commutation, simpler power circuit configuration, smaller volumetric size, lower cost and wider power regulation range, higher-efficiency as compared with single ended quasi-resonant ZVS-PFM inverter and active voltage clamped quasi-resonant ZVS-PWM inverter. The operation principle of the proposed inverter is described on the basis of the simulation and experimental results, together with its operating performances in steady state. The operating performances of this unique proposed high frequency inverter based on ZVS and ZCS arms-related soft commutation principle is evaluated and discussed as compared with the active voltage-clamped ZVS-PWM inverter and a conventional single-ended ZVS-PFM inverter. The practical effectiveness of a novel type quasi-resonant soft-switching PWM high frequency inverter using IGBT is actually proved for consumer induction heated appliances as rice cooker, hot water producer, steamer and super heated steamer. The extended bidirectional circuit topology of quasi-resonant PWM high frequency inverter with minimum circuit components is demonstrated, which operate as the direct frequency changer.

  • PDF

Safety Evaluation for Pressure Rice Cooker Oven using Experiment (실험을 이용한 전기보온압력밥솥 오븐의 안전도 평가)

  • Lee, Seung-Pyo;Koh, Byung-Kab;Ha, Sung-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1541-1547
    • /
    • 2008
  • Because of good taste and quick cooking, the induction heating type pressure rice cooker is widely used. Since pressure is applied to oven structure, it should be necessary to check the safety evaluation. In this paper, strain gauge experiment is performed in order to evaluate the oven's strain and its result is compared with that of structural analysis. And water test is performed to evaluate the oven's permanent deformation. The result is also compared with that of structural analysis. By using these experiments and analyses the safety evaluation method of the oven is suggested.

Zero Voltage Switching Boost H-Bridge AC Power Converter for Induction Heating Cooker

  • Kwon, Soon-Kurl;Saha, Bishwajit
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.19-27
    • /
    • 2007
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost H-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switch mode equivalent circuits and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft-switching(ZVS) operation ranges, and the power dissipation as compared with those of the conventional type high frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation(PWM) and pulse density modulation(PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.