• Title/Summary/Keyword: IGS real-time service

Search Result 21, Processing Time 0.026 seconds

PROCESSING STRATEGY FOR NEAR REAL TIME GPS PRECIPITABLE WATER VAPOR RETRIEVAL (준 실시간 GPS 가강수량 생성을 위한 자료처리 전략)

  • Baek, Jeong-Ho;Lee, Jae-Won;Choi, Byung-Kyu;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.275-284
    • /
    • 2007
  • For the application to the numerical weather prediction (NWP) in active service, it is necessary to ensure that the GPS precipitable water vapor (PWV) data has less than one hour latency and three millimeter accuracy. The comparison and the verification between the daily products from GPS measurement by using the IGS final ephemeris and the conventional meteorological observation has been done in domestic researches. In case of using IGS final ephemeris, GPS measurements can be only post processed in daily basis in three weeks after the observation. Thus this method cannot be applied to any near real-time data processing. In this paper, a GPS data processing method to produce the PWV output with three mm accuracy and one hour latency for the data assimilation in NWP has been planned. For our new data processing strategy, IGS ultra-rapid ephemeris and the sliding window technique are applied. And the results from the new strategy has been verified. The GPS measurements during the first 10 days of January, April, July and October were processed. The results from the observations at Sokcho, where the GPS and radiosonde were collocated, were compared. As the results, a data processing strategy with 0.8 mm of mean bias and 1.7 mm of standard deviation in three minutes forty-three seconds has been established.

An Accuracy Analysis on the Broadcast Ephemeris and IGS RTS (방송궤도력과 IGS RTS의 정확도 분석)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.425-432
    • /
    • 2016
  • When user estimates user's position, GPS positions can be obtained from the navigation message transmitted from the GPS. However, the broadcast ephemeris cannot be used in the applications required high-level accuracies because it can cause errors of several meters. To correct satellite positions and clocks, user can use RTS corrections provided by IGS. In this paper, the accuracy of broadcast and RTS corrections are analyzed by comparing with the IGS final for 3-months. The RTS errors are analyzed for each user's locations and satellite blocks. The correlations between errors and shadow condition, and solar and geomagnetic activities are analyzed. The latency is applied to the RTS corrections, and these are extrapolated by polynomial. Then, the extrapolated RTS are compared with true RTS. The single-day performances of the PPP by broadcast ephemeris and RTS corrected ephemeris are analyzed. As a result, RTS 3D orbit and clock errors are 1/20 and 1/3 less than broadcast ephemeris errors. 3D positioning error of the RTS is 1/5 less than that of broadcast ephemeris.

Precision Assessment of Near Real Time Precise Orbit Determination for Low Earth Orbiter

  • Choi, Jong-Yeoun;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.55-62
    • /
    • 2011
  • The precise orbit determination (POD) of low earth orbiter (LEO) has complied with its required positioning accuracy by the double-differencing of observations between International GNSS Service (IGS) and LEO to eliminate the common clock error of the global positioning system (GPS) satellites and receiver. Using this method, we also have achieved the 1 m positioning accuracy of Korea Multi-Purpose Satellite (KOMPSAT)-2. However double-differencing POD has huge load of processing the global network of lots of ground stations because LEO turns around the Earth with rapid velocity. And both the centimeter accuracy and the near real time (NRT) processing have been needed in the LEO POD applications--atmospheric sounding or urgent image processing--as well as the surveying. An alternative to differential GPS for high accuracy NRT POD is precise point positioning (PPP) to use measurements from one satellite receiver only, to replace the broadcast navigation message with precise post processed values from IGS, and to have phase measurements of dual frequency GPS receiver. PPP can obtain positioning accuracy comparable to that of differential positioning. KOMPSAT-5 has a precise dual frequency GPS flight receiver (integrated GPS and occultation receiver, IGOR) to satisfy the accuracy requirements of 20 cm positioning accuracy for highly precise synthetic aperture radar image processing and to collect GPS radio occultation measurements for atmospheric sounding. In this paper we obtained about 3-5 cm positioning accuracies using the real GPS data of the Gravity Recover and Climate Experiment (GRACE) satellites loaded the Blackjack receiver, a predecessor of IGOR. And it is important to reduce the latency of orbit determination processing in the NRT POD. This latency is determined as the volume of GPS measurements. Thus changing the sampling intervals, we show their latency to able to reduce without the precision degradation as the assessment of their precision.

The Real-Time Determination of Ionospheric Delay Scale Factor for Low Earth Orbiting Satellites by using NeQuick G Model (NeQuick G 모델을 이용한 저궤도위성 전리층 지연의 실시간 변환 계수 결정)

  • Kim, Mingyu;Myung, Jaewook;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.271-278
    • /
    • 2018
  • For ionospheric correction of low earth orbiter (LEO) satellites using single frequency global navigation satellite system (GNSS) receiver, ionospheric scale factor should be applied to the ground-based ionosphere model. The ionospheric scale factor can be calculated by using a NeQuick model, which provides a three-dimensional ionospheric distribution. In this study, the ionospheric scale factor is calculated by using NeQuick G model during 2015, and it is compared with the scale factor computed from the combination of LEO satellite measurements and international GNSS service (IGS) global ionosphere map (GIM). The accuracy of the ionospheric delay calculated by the NeQuick G model and IGS GIM with NeQuick G scale factor is analyzed. In addition, ionospheric delay errors calculated by the NeQuick G model and IGS GIM with the NeQuick G scale factor are compared. The ionospheric delay error variations along to latitude and solar activity are also analyzed. The mean ionospheric scale factor from the NeQuick G model is 0.269 in 2015. The ionospheric delay error of IGS GIM with NeQuick G scale factor is 23.7% less than that of NeQuick G model.

Validation of GNSS TEC from NMSC GNSS Processing System

  • Lee, Jeong-Deok;Oh, Seung-Jun;Kil, Hyo-Sub;Shin, Dae-Yun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.101.1-101.1
    • /
    • 2011
  • National Meteorological Satellite Center(NMSC) of Korea Meteorological Administration(KMA) is collecting GNSS data in near-real time for about 80 GNSS stations operated by multiple agencies. (eg. National Geographic Information Institute (NGII), Korea Astronomy and Space Science Institute (KASI), DGNSS Central Office) Using these GNSS data, NMSC developed automatic Total Electron Contents(TEC) derivation system over the Korean peninsular every 1-hour based on single station data processing. We present the TEC result and validation of TEC using International GNSS Service(IGS) global TEC data for the case of quiet time and storm time. The future plans for the system improvement will be discussed.

  • PDF

Accuracy Analysis of Predicted CODE GIM in the Korean Peninsula

  • Ei-Ju Sim;Kwan-Dong Park;Jae-Young Park;Bong-Gyu Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.423-430
    • /
    • 2023
  • One recent notable method for real-time elimination of ionospheric errors in geodetic applications is the Predicted Global Ionosphere Map (PGIM). This study analyzes the level of accuracy achievable when applying the PGIM provided by the Center for Orbit Determination of Europe (CODE) to the Korean Peninsula region. First, an examination of the types and lead times of PGIMs provided by the International GNSS Service (IGS) Analysis Center revealed that CODE's two-day prediction model, C2PG, is available approximately eight hours before midnight. This suggests higher real-time usability compared to the one-day prediction model, C1PG. When evaluating the accuracy of PGIM by assuming the final output of the Global Ionosphere Map (GIM) as a reference, it was found that on days with low solar activity, the error is within ~2 TECU, and on days with high solar activity, the error reaches ~3 TECU. A comparison of the errors introduced when using PGIM and three solar activity indices-Kp index, F10.7, and sunspot number-revealed that F10.7 exhibits a relatively high correlation coefficient compared to Kp-index and sunspot number, confirming the effectiveness of the prediction model.

Long Baseline GPS RTK with Estimating Tropospheric Delays

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.3
    • /
    • pp.123-129
    • /
    • 2014
  • The real-time kinematic (RTK) is one of precise positioning methods using Global Positioning System (GPS) data. In the long baseline GPS RTK, the ionospheric and tropospheric delays are critical factors for the positioning accuracy. In this paper we present RTK algorithms for long baselines more than 100 km with estimating tropospheric delays. The state vector is estimated by the extended Kalman filter. We show the experimental results of GPS RTK for various baselines (162.10, 393.37, 582.29, and 1283.57 km) by using the Korea Astronomy and Space Science Institute GPS data and one International GNSS Service (IGS) reference station located in Japan. As a result, we present that long baseline GPS RTK can provide the accurate positioning for users less than few centimeters.

Construction of Ionospheric TEC Retrieval System Using Korean GNSS Network (국내 GNSS 관측 자료를 이용한 전리권 총전자밀도 산출 시스템 구축)

  • Lee, Jeong-Deok;Shin, Daeyun;Kim, Dohyeong;Oh, Seung Jun
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.30-34
    • /
    • 2012
  • National Meteorological Satellite Center(NMSC) of Korea Meteorological Administration(KMA) has launched to implement the application development to get prepared for the space weather operation since 2010. As a action of KMA's space weather work, NMSC constructed Global Navigation Satellite System(GNSS) application system for meteorology and space weather. We will introduce NMSC's space weather application system which derives regional TEC(Total Electron Content) in near real time using nation-wide GNSS network data. First, We constructed system for collecting GNSS data, which is currently collecting about 80 stations operated by agencies like NGII(National Geographic Information Institute), Central Office of DGPS(Differential GPS), and KASI(Korea Astronomy and Space Science) including KMA's own data of 2 stations. In order to retreive regional TEC over Korean peninsular, we build up the automatic processes running every 1-hour. In these processes, firstly, GNSS data of every stations with 24 hours time window are processed to derive DCBs(Differential Code Biases) of each GNSS station and TEC values on every ionosphere piercing point(IPP). Then we made gridded regional TEC map with resolution of 0.25 degree from 31N, 121E to 41N, 135E by combination of all station results within 30 minutes window with assumption that TEC of a given point during a given 30 minutes window would have a constant value. The grid points without TEC value are interpolated using Barnes objective analysis. We presentour regional TEC maps, which can describe better on the status of ionosphere over Korean peninsular compared to IGS TEC maps.

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms Based on GLONASS Code-Pseudorange Measurements

  • Kim, Mi-So;Park, Kwan-Dong;Won, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • The purpose of this study is to develop precise point positioning (PPP) algorithms based on GLONASS code-pseudorange, verify their performance and present their utility. As the basic correction models of PPP, we applied Inter Frequency Bias (IFB), relativistic effect, satellite antenna phase center offset, and satellite orbit and satellite clock errors, ionospheric errors, and tropospheric errors that must be provided on a real-time basis. The satellite orbit and satellite clock errors provided by Information-Analytical Centre (IAC) are interpolated at each observation epoch by applying the Lagrange polynomial method and linear interpolation method. We applied Global Ionosphere Maps (GIM) provided by International GNSS Service (IGS) for ionospheric errors, and increased the positioning accuracy by applying the true value calculated with GIPSY for tropospheric errors. As a result of testing the developed GLONASS PPP algorithms for four days, the horizontal error was approximately 1.4 ~ 1.5 m and the vertical error was approximately 2.5 ~ 2.8 m, showing that the accuracy is similar to that of GPS PPP.

PRECISE ORBIT DETERMINATION OF GPS SATELLITES USING PHASE OBSERVABLES (위상 관측 자료를 이용한 GPS 위성의 정밀 궤도 결정)

  • 지명국;최규홍;박필호
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.375-380
    • /
    • 1997
  • The accuracy of user position by GPS is heavily dependent upon the accuracy of satellite position which is usually transmitted to GPS users in radio signals. The real-time satellite position information directly obtained from broadcast ephimerides has the accuracy of 3~10 meters which is very unsatisfactory to measure 100km baseline to the accuracy of less than a few mili-meters. There are globally at present seven orbit analysis centers capable of generating precise GPS ephimerides and their orbit quality is of the order of about 10cm. Therefore, precise orbit model and phase processing technique were reviewed and consequently precise GPS ephimerides were produced after processing the phase observables of 28 global GPS stations for 1 day. Initial 6 orbit parameters and 2 solar radiation coefficients were estimated using batch least square algorithm and the final results were compared with the orbit of IGS, the International GPS Service for Goedynamics.

  • PDF