• 제목/요약/키워드: IGF-I

검색결과 380건 처리시간 0.025초

Ligand-Independent Activation of the Androgen Receptor by Insulin-Like Growth Factor-I and the Role of the MAPK Pathway in Skeletal Muscle Cells

  • Kim, Hye Jin;Lee, Won Jun
    • Molecules and Cells
    • /
    • 제28권6호
    • /
    • pp.589-593
    • /
    • 2009
  • In this study, the roles of the p38 MAPK, ERK1/2 and JNK signaling pathway in IGF-I-induced AR induction and activation were examined. C2C12 cells were treated with IGF-I in the absence or presence of various inhibitors of p38 MAPK (SB203580), ERK1/2 (PD98059), and JNK (SP600125). Inhibition of the MAPK pathway with SB203580, PD98059, or SP600125 significantly decreased IGF-I-induced AR phosphorylation and total AR protein expression. IGF-I-induced nuclear fraction of total AR and phosphorylated AR were significantly inhibited by SB203580, PD98059, or SP600125. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by those inhibitors in dose-dependent manner. Confocal images showed that IGF-I-induced AR nuclear translocation from cytosol was significantly blocked by SB203580, PD98059, or SP600125, suggesting that the MAPK pathway regulates IGF-I-induced AR nuclear localization in skeletal muscle cells. The present results suggest that the MAPK pathways are required for the ligand-independent activation of AR by IGF-I in C2C12 skeletal muscle cells.

골아세포의 IGF-I 유전자 발현 및 세포증식에 대한 1,25-dihydroxyvitamin $D_3$의 영향 (The Effects of 1,25- Dihydroxyvitamin $D_3$ on Expression of IGF-I Gene and Cellular Proliferation in MC3T3-E1 Cells)

  • 최희동;이재목;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제30권1호
    • /
    • pp.39-52
    • /
    • 2000
  • Polypeptide growth factor belong to a class of potent biologic mediator which regulate cell differentiation, proliferation, migration and metabolism. 1,25-dihydroxyvitamin $D_3$ decrease cell proliferation, and stimulate alkaline phosphatase activity which express in osteoblast during cell differentiation period. IGF-I is known to stimulate cell proliferation and differentiation too. 1,25-dihydroxyvitamin $D_3$ is known to increase IGF-I binding sites and IGF binding protein which inhibite the effect of IGF. The purpose of this study is to evaluate potential role of IGF-I as mediator that control the action of 1,25-dihydroxyvitamin $D_3$. MC3T3-E1 cell were seeded $5{\times}10^5/ml$ at 100mm culture plate in ${\alpha}-MEM$ containing 10% fetal bovine serum. After 48 hour incubation period, medium were changed ${\alpha}-MEM$ containing 5% fetal bovine serum. After 24 hours, $10^{-9}M$ 1,25-dihydroxyvitamin $D_3$ added. Total mRNA was extracted at 0, 6, 24, 48, 72 hour. PRPCR method was programed for the detection of IGF-I mRNA. In the both groups of 1,25-dihydroxy vitamin $D_3$ treated and control, alternative splicing form of IGF-I, IGF-IA and IGF-IB were expressed. In the 1,25-dihydroxyvitamin $D_3$ treated group, IGF-I mRNA expression was matained until 24 hour, there after expression was decresed. MC3T3-E1 cell were seeded $2.5{\times}10^4/ml$ at 24well plate in ${\alpha}-MEM$ containing 10% fetal bovine serum. After 48 hour incubation period, medium were changed ${\alpha}-MEM$ containing 3% fetal bovine serum. After 24 hours, $10^{-9}M$ 1,25-dihydroxyvitamin $D_3$ and 10 ng/ml IGF-I were added separately or together. Cell were cultured for 1 and 3 days, $2{\mu}Ci/ml\;[^3H]$ -thymidine was added for the last 24h of culture of each days. ${[^3H]}$-thymidine incorporation in to DNA was measured and expressed counter per minute(CPM). DNA synthetic activity was significantly decreased by 1,25-dihydroxyvitamin $D_3$ both at 1 day and 3 day, and in the combination group of 1,25-dihydroxyvitamin $D_3$ and IGF-I, DNA synthetic activity was also decreased both at 1 day and 3 days. IGF-I did not affect the DNA synthetic activity compared to control group both at 1 day and 3 day. From the above results, 1,25-dihydroxyvitamin $D_3$ was potent inhibitor of cell proliferaton in MC3T3-E1 cells. It assumed that the effect of 1,25-dihydroxyvitamin $D_3$ on osteoblast proliferation may be mediated in part by decreased level of IGF-I.

  • PDF

트레이닝 기간 중 사군자탕 섭취가 Ammonia와 IGF-I 에 미치는 영향 (Effect of SagungaTang Ingestion on Ammonia and IGF-I During Training Period)

  • 민범일
    • 한국콘텐츠학회논문지
    • /
    • 제5권6호
    • /
    • pp.223-229
    • /
    • 2005
  • 강한 체력과 고도의 기술이 필요한 농구경기는 휴식시간중 보다 빠른 피로회복과 큰 신장이 경기의 승패를 결정짓는 중요한 요소라 할 수 있다. 따라서 본 연구는 선수들이 도핑의 위험성이 없고 우수한 효과의 ergogenic aids를 알아보고자 하계훈련기간중 사군자탕의 섭취가 피로 유발물질인 ammonia 농도의 변화와 성장에 관련 있는 IGF-I에 미치는 영향을 알아보기 위해 고교 농구선수에게 6주간 사군자탕을 섭취시킨 결과 ammonia는 섭취기간에 따른 기간에 유의한 차이를 나타냈고, 섭취 기간에 따른 안정시 IGF-I의 농도가 통계적으로 유의한 차(p<.01)를 나타내 사군자탕이 경기 중 피로회복과 선수들의 성장에 보다 효과적인 것으로 나타났다.

  • PDF

Chicken Insulin-Like Growth Factor-I Stimulates Protein Synthesis of Chicken Embryo Myoblasts Cultured in Serum-Free Medium

  • Kita, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권1호
    • /
    • pp.17-20
    • /
    • 2001
  • The effect of chicken IGF-I on protein synthesis of chicken embryo myoblasts cultured in serum-free medium was examined. When myoblasts were expanded to approximate 20-30% of well, the medium was changed to the serum-free medium including 0, 2, 20, 200 or 2000 ng/ml of recombinant chicken IGF-I. The culture medium including 10% fetal calf serum (FCS) was used as positive control. After 1 day of incubation, protein synthesis was measured by the incorporation of [$^3H$]-L-leucine. Thereafter cells were continued to incubate for further 18 hours, and the radioactivity in the protein was measured as an index of protein synthesis. The values for protein synthesis cultured in the serum-free medium without chicken IGF-I or with 2000 ng/ml of chicken IGF-I were the lowest. Protein synthesis was elevated with increasing chicken IGF-I concentration from 0 to 20 ng/ml. The values for protein synthesis in the 20 ng/ml and 200 ng/ml IGF-I groups were about half of that of the FCS group. The present study revealed that the potency of chicken IGF-I at the levels of 20 to 200 ng/ml to stimulate myoblast protein synthesis was about half of that of 10% FCS.

Effect of Single Growth Factor and Growth Factor Combinations on Differentiation of Neural Stem Cells

  • Choi, Kyung-Chul;Yoo, Do-Sung;Cho, Kyung-Sock;Huh, Pil-Woo;Kim, Dal-Soo;Park, Chun-Kun
    • Journal of Korean Neurosurgical Society
    • /
    • 제44권6호
    • /
    • pp.375-381
    • /
    • 2008
  • Objective : The effects on neural proliferation and differentiation of neural stem cells (NSC) of basic fibroblast growth factor-2 (bFGF). insulin growth factor-I (IGF-I). brain-derived neurotrophic factor (BDNF). and nerve growth factor (NGF) were assessed. Also, following combinations of various factors were investigated : bFGF+IGF-I, bFGF+BDNF, bFGF+NGF, IGF-I+BDNF, IGF-I+NGF, and BDNF+NGF. Methods : Isolated NSC of Fisher 344 rats were cultured with individual growth factors, combinations of factors, and no growth factor (control) for 14 days. A proportion of neurons was analyzed using $\beta$-tubulin III and NeuN as neural markers. Results : Neural differentiations in the presence of individual growth factors for $\beta$-tubulin III-positive cells were : BDNF, 35.3%; IGF-I, 30.9%; bFGF, 18.1%; and NGF, 15.1%, and for NeuN-positive cells was : BDNF, 34.3%; bFGF, 32.2%; IGF-I, 26.6%; and NGF, 24.9%. However, neural differentiations in the absence of growth factor was only 2.6% for $\beta$-tubulin III and 3.1% for NeuN. For $\beta$-tubulin III-positive cells, neural differentiations were evident for the growth factor combinations as follows : bFGF+IGF-I, 73.1 %; bFGF+NGF, 65.4%; bFGF+BDNF, 58.7%; BDNF+IGF-I, 52.2%; NGF+IGF-I, 40.6%; and BDNF+NGF, 40.0%. For NeuN-positive cells : bFGF+IGF-I, 81.9%; bFGF+NGF, 63.5%; bFGF+BDNF, 62.8%; NGF+IGF-I, 62.3%; BDNF+NGF, 56.3%; and BDNF+IGF-I, 46.0%. Significant differences in neural differentiation were evident for single growth factor and combination of growth factors respectively (p<0.05). Conclusion : Combinations of growth factors have an additive effect on neural differentiation. The most prominent neural differentiation results from growth factor combinations involving bFGF and IGF-I. These findings suggest that the combination of a mitogenic action of bFGF and post-mitotic differentiation action of IGF-I synergistically affects neural proliferation and NSC differentiation.

인간의 대장암 HT-29 세포주에서 라이코펜이 Insulin-like Growth Factor-I Receptor Signaling Pathway에 미치는 영향 (Effect of Lycopene on the Insulin-like Growth Factor-I Receptor Signaling Pathway in Human Colon Cancer HT-29 Cells)

  • 이현숙;정재인;강영희;;윤정한
    • 한국식품영양과학회지
    • /
    • 제32권3호
    • /
    • pp.437-443
    • /
    • 2003
  • 선행연구에서 라이코펜이 HT-29세포의 증식을 억제하는 것을 관찰하였기 때문에 본 연구는 그 기전을 연구하기 위하여 수행되 었다. 라이코펜이 HT-29 세포의 사멸을 유도하는지 조사하기 위해서 여러 농도의 라이코펜이 포함된 배지에서 세포를 4일 동안 배양하였다. 라이코펜 농도의 증가에 따라 사멸되는 세포에서 나타나는 특징의 하나인 DNA fragmentation이 증가하는 것을 관찰하였다. Western blot을 수행하여 얻은 결과에 의하면 라이코펜이 IGF-IR, IRS-1, PI3K, Akt와 같은 IGF-IR pathway에 속하는 단백질의 수준을 감소시켰다. IGF-IR의 인산화를 유도하기 위해서 라이코펜이 포함된 배지에서 세포를 배양하고 IGF-I을 첨가하여 0, 5, 10, 60분간 배양한 다음 IGF-IR antibody를 이용하여 immunoprecipitation을 수행하였다. 라이코펜은 IGF-I에 의한 IGF-IR, IRS-1의 인산화와 IGF-IR와 PI3K의 결합을 감소하고 인산화된 Akt를 감소시켰다. 이와 같은 IGF-IR signaling의 억제는 이 대장암세포에 존재하는 IGF-II의 autocrine loop을 억제하는 원인이 될 수 있어, 라이코펜의 암세포증식을 억제하는 기전 중의 하나가 될 수 있다. 라이코펜은 토마토와 그 가공품에 많이 존재하는 물질로 자연적인 식사를 통해 많이 섭취할 수 있는 물질이다. 라이코펜의 항암 기전을 밝혀냄으로써 미래 암예방과 치료를 위한 중요한 기능성 영양소를 생산할 수 있는 기초를 마련해줄 수 있을 것으로 기대된다.

Insulin-like growth factor-I 유전자의 조직 특이적 발현에 대한 조절기전 (Regulatory Mechanism in Tissue-specific Expression of Insulin-like Growth Factor-I Gene)

  • 안미라
    • KSBB Journal
    • /
    • 제18권4호
    • /
    • pp.329-334
    • /
    • 2003
  • Insulin-like growth factor-I (IGF-I) 유전자의 발현은 사람 및 쥐에서 두 개의 promoters (P1과 P2)로부터의 전사와 alternative RNA splicing 및 differential RNA polyadenylation과 같은 복잡한 기전들에 의하여 조절되는데 조직에 따라 성장호르몬을 포함한 여러 요소들이 관여하는 것으로 알려져 있다. 또한 사람의 IGF-I 유전자 exon 1의 upstream에 존재하는 P1에 hepatocyte nuclear factor l$\alpha$와 CAAT/enhancer-binding protein (C/EBP) isoform 들이 결합하여 조직 및 발달단계 특이한 발현에 중요한 역할을 할 것으로 제안되었지만, exon 1의 downstream sequence가 IGF-I 유전자의 조직 특이적 발현을 조절하는 지에 대하여는 연구되어 있지 않다. 연령이 다른 쥐의 간 및 뇌 조직에서 total RNA를 분리하고 solution hybridization/RNase protection 방법으로 분석하여 IGF-I 유전자의 발현이 태어난 후 간 조직에서는 점차적으로 증가하였지만 뇌조직에서는 감소하여 발달단계에 따라 조직 특이하게 발현되는 것을 확인하였다. IGF-I exon 1의 주요한 전사 개시점으로부터 아래쪽에 존재하는 C/EBP 결합부위를 포함하고 있는 cis-acting element에 해당하는 oligonucleotide들과 간 및 뇌조직에서 분리한 핵단백질들을 이용하여 DNA-결합 활성을 가진 분자량이 다른 C/EBP$\alpha$나 C/EBP$\beta$ 단백질들을 확인하였으며 southwestern 및 western immnoblotting 분석을 하여 간 조직의 핵 추출물에서는 42$^{C}$EBP$\alpha$/, 와 p38$^{C}$EBP$\alpha$/, p35$^{C}$EBP$\alpha$/, p38$^{C}$EBP$\beta$/, 그리고 p35$^{C}$EBP$\beta$/가 IGF-I exon 1 oligonucleotide와 복합체를 형성하고 뇌 조직에서는 p42$^{C}$EBP$\alpha$과 p38$^{C}$EBP$\beta$가 복합체 형성에 관여하는 것으로 나타났다. 이러한 결과들은 FRE-C/EBP isoform 복합체 형성이 IGF-I 유전자 발현의 조직 특이적 조절에 중요한 역할을 할 것으로 제안한다.할을 할 것으로 제안한다.

Nutritional and Tissue Specificity of IGF-I and IGFBP-2 Gene Expression in Growing Chickens - A Review -

  • Kita, K.;Nagao, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권5호
    • /
    • pp.747-754
    • /
    • 2005
  • Nutritional regulation of gene expression associated with growth and feeding behavior in avian species can become an important technique to improve poultry production according to the supply of nutrients in the diet. Insulin-like growth factor-I (IGF-I) found in chickens has been characterized to be a 70 amino acid polypeptide and plays an important role in growth and metabolism. Although it is been well known that IGF-I is highly associated with embryonic development and post-hatching growth, changes in the distribution of IGF-I gene expression throughout early- to late-embryogenesis have not been studied so far. We revealed that the developmental pattern of IGF-I gene expression during embryogenesis differed among various tissues. No bands of IGF-I mRNA were detected in embryonic liver at 7 days of incubation, and thereafter the amount of hepatic IGF-I mRNA was increased from 14 to 20 days of incubation. In eyes, a peak in IGF-I mRNA levels occurred at mid-embryogenesis, but by contrast, IGF-I mRNA was barely detectable in the heart throughout all incubation periods. In the muscle, no significant difference in IGF-I gene expression was observed during different stages of embryogenesis. After hatching, hepatic IGF-I gene expression as well as plasma IGF-I concentration increases rapidly with age, reaches a peak before sexual maturity, and then declines. The IGF-I gene expression is very sensitive to changes in nutritional conditions. Food-restriction and fasting decreased hepatic IGF-I gene expression and refeeding restored IGF-I gene expression to the level of fed chickens. Dietary protein is also a very strong factor in changing hepatic IGF-I gene expression. Refeeding with dietary protein alone successfully restored hepatic IGF-I gene expression of fasted chickens to the level of fed controls. In most circumstances, IGF-I makes a complex with specific high-affinity IGF-binding proteins (IGFBPs). So far, four different IGFBPs have been identified in avian species and the major IGFBP in chicken plasma has been reported to be IGFBP-2. We studied the relationship between nutritional status and IGFBP-2 gene expression in various tissues of young chickens. In the liver of fed chickens, almost no IGFBP-2 mRNA was detected. However, fasting markedly increased hepatic IGFBP-2 gene expression, and the level was reduced after refeeding. In the gizzard of well-fed young chickens, IGFBP-2 gene expression was detected and fasting significantly elevated gizzard IGFBP-2 mRNA levels to about double that of fed controls. After refeeding, gizzard IGFBP-2 gene expression decreased similar to hepatic IGFBP-2 gene expression. In the brain, IGFBP-2 mRNA was observed in fed chickens and had significantly decreased by fasting. In the kidney, IGFBP-2 gene expression was observed but not influenced by fasting and refeeding. Recently, we have demonstrated in vivo that gizzard and hepatic IGFBP-2 gene expression in fasted chickens was rapidly reduced by intravenous administration of insulin, as indicated that in young chickens the reduction in gizzard and hepatic IGFBP-2 gene expression in vivo stimulated by malnutrition may be, in part, regulated by means of the increase in plasma insulin concentration via an insulin-response element. The influence of dietary protein source (isolated soybean protein vs. casein) and the supplementation of essential amino acids on gizzard IGFBP-2 gene expression was examined. In both soybean protein and casein diet groups, the deficiency of essential amino acids stimulated chickens to increase gizzard IGFBP-2 gene expression. Although amino acid supplementation of a soybean protein diet significantly decreased gizzard IGFBP-2 mRNA levels, a similar reduction was not observed in chickens fed a casein diet supplemented with amino acids. This overview of nutritional regulation of IGF-I and IGFBP-2 gene expression in young chickens would serve for the establishment of the supply of nutrients to diets to improve poultry production.

당뇨환자의 식사 전후에 따른 혈중 Insulin-like growth factor(IGF-I), IGF-II 및 Insulin-like growth factor binding proteins(IGFBP)-3의 변화 (Changes of Insulin-like Growth factor-I, II and IGF-Binding Protein-3 on Fasting and Postprandial state in Diabetes)

  • 허영란;강창원;차연수
    • 한국가정과학회지
    • /
    • 제9권1호
    • /
    • pp.81-88
    • /
    • 2006
  • IGFs and IGFBPs have an important role in controlling glucose homeostasis. This study was conducted to investigate the changes of insulin-like growth factor(IGF)-I. IGF-II and IGF binding proteins (IGFBPs) on fasting and postprandial state in Korean diabetes, Twenty eight healthy subjects and fifty seven diabetic patients participated in this study. The healthy subjects were not knowingly suffered from any disease and were not receiving any medical treatment, and diabetic subjects were undergo medical treatment, continuously. Weight and height were measured and body mass index (BMI) was calculated as weight (kg) divided by the square of height (m2). Blood pressure was measured. Plasma lipid profiles were analyzed by enzymatic methods, plasma Insulin and glucose levels were measured in fasting and postprandial state, respectively. The levels of serum IGFs and IGFBP-3 were measured by radioimmunoassay (RIA). The levels of glucose and insulin were significantly higher in diabetes than normal subjects on fasting as well as postprandial state (p<0.0l). The levels of IGF-I was significantly lower in diabetes than normal subjects, however in postprandial state, there was no significant difference between diabetes and control subjects, The levels of IGF-II were significantly lower in diabetes than control subjects both fasting and postpradial state, The level of IGFBP-3 were not significantly different between diabetes and normal subjects. Fasting IGF-I, IGF-II and IGFBP-3 levels were positively correlated with those levels on postprandial state, fasting IGe levels of IGF-I levels were positively correlated with fasting insulin levels, and postprandial IGF-I levels were positively correlated with fasting glucose, postprandial insulin and postprandial insulin levels, plasma triglyceride levels were correlated with plasma triglyceride levels. The IGFBP-3 levels were not correlated with IGF components, glucose, insulin and plasma lipids, These results demonstrate that in diabetes, the components IGF-I/IGFBPs system were significantly correlated with plsma glucose and insulin levels both fasting and postprandial state.

  • PDF

Mesangial 세포에서 고포도당에 의한 IGFs 분비와 PKC 및 산화성 스트레스와의 관련성에 관한 연구 (The relationship between high glucose-induced secretion of IGFs and PKC or oxidative stress in mesangial cells)

  • 박수현;허정선;강창원;한호재
    • 대한수의학회지
    • /
    • 제44권4호
    • /
    • pp.497-505
    • /
    • 2004
  • The proliferation of mesangial cells has been associated with the development of diabetic nephropathy. The cell proliferation has been regulated by diverse growth factors. Among them, insulin like growth factors(IGFs) are also involved in the pathogenesis of diabetic nephropathy. However, it is not yet known about the effect of high glucose on IGF-I and IGF-II secretion and the relationship between high glucose-induced secretion of IGFs and PKC or oxidative stress in the mesangial cells. Thus, we examined the mechanisms by which high glucose regulates secretion of IGFs in mesangial cells. High glucose(25 mM) increased IGF-I and IGF-II secretion. High glucose-induced increase of IGF-I and IGF-II secretion were blocked by taurine($2{\times}10^{-3}$ M), N-acetyl cystein(NAC, $10^{-5}M$), or GSH($10^{-5}M$) (antioxidants), suggesting the role of oxidative stress. High glucose-induced secretion of IGF-I and IGF-II were blocked by H-7, staurosporine, and bisindolylmaleimide I(protein kinase C inhibitors). On the other hand, high glucose also increased lipid peroxide (LPO) formation in a dose dependent manner. In addition, high glucoseinduced stimulation of LPO formation was blocked by PKC inhibitors. These results suggest that PKC is responsible for the increase of oxidative stress in the action of high glucose-induced secretion of IGF-I and IGF-II in mesangial cells. In conclusion, high glucose stimulates IGF-I and IGF-II secretion via PKCoxidative stress signal pathways in mesangial cells.