• Title/Summary/Keyword: IGCT

Search Result 27, Processing Time 0.029 seconds

The Parallel Operation of Single Phase PWM Rectifier using IGCT (IGCT를 이용한 단상 PWM정류기 병렬운전)

  • 이현원;장성영;김연준;이광주
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2000
  • 대용량 반도체 소자인 IGCT를 사용하여 철도차량용 AC-to-DC 단상 PWM 컨버터를 제작 실험하였다. 컨버터의 용량을 향상시키기 위해 2대의 PWM 컨버터를 병렬 운전하였으며 병렬운전시 각각의 컨버터 스위칭각을 다르게 제어하여 각 컨버터의 전류 리플을 상쇄시켜 전원의 고조파 함유를 줄였다. 출력전압제어는 입력전류의 측정 없이 내부 계산에 의해 수행하였으며 단위역률을 제어하기 위해 소프트웨어적으로 간단히 PLL을 수행하였다.

Performance Verification of IGCT GDU Power Supply System(HFI) for 100MVA STATCOM (100MVA STATCOM IGCT GDU 전원공급장치(HFI) 실증)

  • Han, Young-Seong;Chung, Chung-Choo;Choi, Jong-Yun;Park, Yong-Hee;Suh, In-Young;Yoo, Hyun-Ho;Kim, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.367-368
    • /
    • 2008
  • 한전 전력연구원이 주관하고 (주)효성이 참여하는 협동연구과제로 100MVA STATCOM(Static Compensator)개발이 수행 중에 있다. 100MVA STATCOM의 반도체 스위칭 소자로는 IGCT(Integrated Gate Commutated Thyristor)를 사용하고 있으며 IGCT GDU(Gate Deive Unit)의 전원공급용으로 HFI(High Frequency Inverter)를 사용한다. 본 논문에서는 설계 및 제작된 HFI를 실제 인버터 IGCT GDU전원 공급용으로 적용하여 확인한 성능에 대하여 기술하고 있다.

  • PDF

Electrical Characteristics of High Voltage IGCT Devices for Rapid Electronic Railway (고속전철용 고전압 IGCT소자의 전기적 특성)

  • Kim, Sang-Cheol;Seo, Kil-Soo;Kim, Hyong-Woo;Kim, Eun-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1556-1558
    • /
    • 2003
  • IGCT devices is a superior devices for power conversion purpose. The basic structure of the IGCT devices is same as that of GTO thyristor. This makes the blocking voltage higher and controllable on-state current higher. In this paper, we present static and dynamic characteristics of 4.5 kV PT-type IGCT devices as a function of minority carrier lifetime, n-base thickness and n-buffer thickness. We should choose proper structural parameters for good electrical characteristics of GCT devices.

  • PDF

Design of IGCT GDU Power Supply System(HFI) for 100MVA STATCOM (100MVA STATCOM IGCT GDU 전원공급장치(HFI) 설계)

  • Han, Young-Seong;Chung, Chung-Choo;Choi, Jong-Yun;Park, Yong-Hee;Suh, In-Young;Yun, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.365-366
    • /
    • 2008
  • 한전 전력연구원이 주관하고 (주)효성이 참여하는 협동연구과제로 100MVA STATCOM(Static Compensator)개발이 수행 중에 있다. 100MVA STATCOM의 반도체 스위칭 소자로는 IGCT(Integrated Gate Commutated Thyristor)를 사용하고 있다. 본 논문에서는 IGCT GDU(Gate Drive Unit)전원공급장치인 HFI(High Frequency Inverter) 설계에 대하여 기술하고 있다.

  • PDF

Design of 4.5kV/1.5kA IGCT (4.5kV/1.5kA급 IGCT 설계 및 특성분석)

  • Kim, Hyoung-Woo;Kim, Sang-Cheol;Seo, Kil-Su;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.357-360
    • /
    • 2003
  • In this paper, we designed 4.5kV/1.5kA IGCT devices. GCT thyristor has many superior characteristics compared with GTO thyristor, for examples; snubberless turn-off capability, short storage time, high turn-on capability, small turn-off gate charge and low total power loss of the application system containing device and peripheral parts such as anode reactor and snubber capacitance. In this paper we designed GCT thyristor devices, and analyzed static and dynamic characteristics of GCT thyristor depending on the minority carrier lifetime, n-base thickness and doping concentration of n-base region, respectively. Especially, turn-on and turn-off characteristics are very important characteristics for GCT thyristor devices. So, we considered above characteristic for design and analysis of GCT devices.

  • PDF

Propulsion System(Motor-Block) for High-Speed Train using IGCT Device (IGCT 소자를 사용한 고속전철용 추진제어장치(MOTOR-BLOCK))

  • Cho Hyun-Wook;Kim Tae-Yun;Kno Ae-Sook;Jang Kyung-Hyun;Lee Sang-Jun;Choi Jong-Mook
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.665-670
    • /
    • 2005
  • This paper introduces the propulsion system(Motor Block) stabilization test result for Korean High Speed Railway(HSR). The developed propulsion system using high power semiconductor, IGCT(Integrated Gate Commutated Thyristor) consists of two PWM converter and VVVF inverter. In this paper, overall configuration of propulsion system is briefly described and stabilization tests are made to verify the developed propulsion system. The presented test results shows beatless control method of inverter output current at the 200km/h and performance test of BCH.

  • PDF

Comparative Performance Evaluation of 10kV IGCTs in 3L ANPC and TNPC Converters in PMSG MV Wind Turbines (PMSG 풍력발전기용 3L ANPC와 TNPC 컨버터에서의 10kV IGCT 성능 비교 평가)

  • Lyngdoh, Amreena Lama;Suh, Yongsug;Park, Byoung-Gun;Kim, Jiwon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.419-427
    • /
    • 2019
  • Several multilevel converter topologies have been proposed and compared. The three-level (3L) neutral-point-clamped (NPC) topology is promising and widely accepted. However, this topology suffers from uneven loss distribution among switches due to its fixed switching strategy. The 3L active NPC (ANPC) topology, which exhibits improved loss distribution profile, was proposed to address this disadvantage. The 3L T-NPC topology, a hybrid configuration of 2L and 3L NPC topologies, was introduced to address not only the loss distribution problem but also the reduction in the number of switches. In the present research, the application of these three topologies in PMSG-based medium-voltage wind turbines was investigated. The power devices considered were 10 kV IGCTs. Performance was evaluated in terms of a power loss of 10 kV IGCT for each NPC topology, which is a crucial indicator of thermal behavior, reliability, cost, and lifetime of any converter. The comparison was performed using ABB make 10 kV IGCT 5SHY17L9000 and the simulation tool PLECS.

Static and Transient Simulation of High Power IGCT Devices (대용량 IGCT 소자의 정상상태 및 과도상태 특성 해석)

  • Kim, Sang-Cheol;Kim, Hyung-Woo;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.213-216
    • /
    • 2003
  • Recently a new high power device GCT (Gate Commutated Turn-off) thyristor has been successfully introduced to high power converting application areas. GCT thyristor has a quite different turn-off mechanism to the GTO thyristor. All main current during turn-off operation is commutated to the gate. Therefore, IGCT thyristor has many superior characteristics compared with GTO thyristor; especially, snubberless tum-off capacibility and higher turn-on capacibility. The basic structure of the GeT thyristor is same as that of the GTO thyristor. This makes the blocking voltage higher and controllable on-state current higher. The turn-off characteristic of the GCT thyristor is influenced by the minority carrier lifetime and the performance of the gate drive unit. In this paper, we present turn-off characteristics of the 2.5kV PT(Punch-Through) type GCT as a function of the minority carrier lifetime and variation of the doping profile shape of p-base region.

  • PDF

A Study on the Development of IGCT Chopper System for the Eddy Current Brake Unit (고속전철의 와전류제동을 위한 IGCT 초퍼장치 개발에 관한 연구)

  • Lee, Eui-Jae;Choi, Jung-Soo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1238-1240
    • /
    • 2002
  • 고속전철의 새로운 제동개념인 와전류제어 제동방식에서는 출력 자화력의 제어를 위해서 전류제어 시스템이 필요하다. 본 논문에서는 신개념의 전력제어 소자인 IGCT(Insulated Gate Commutated Thyristor)를 초퍼회로에 적용한 스너버회로가 없는 형태의 고속전철용 와전류 제어장치의 개발에 대하여 설명하였다. 회로의 성능을 파악하기 위하여 주회로 시뮬레이션을 실시하였으며 대상체인 부하 마그네트를 연결한 고전압 출력 시험을 통해 장치의 성능을 조사하였다.

  • PDF

Flyback-type Snubber of High Efficiency for 10kV IGCT in 7MW Wind Turbine Systems

  • Shirmohammadi, Siamak;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.359-360
    • /
    • 2015
  • 10kV IGCT has been recently developed and has the potential to push wind turbine systems to higher power and voltage rating. Converters employing IGCTs need snubber and OVP circuit to limit the rate of rise of current and peak over voltage across IGCT during turn on and off state respectively. The conventional RCD snubber which is used in such power converter dissipates a significant amount of power. In order to reduce the amount of energy lost by conventional RCD snubber, this paper proposes an isolated inductor snubber circuit that not only meets all of the IGCTs characteristics during on and off-state but also significantly saves the power loss. Loss analysis of conventional di/dt snubber and OVP circuit is performed for the 3-level NPC type back-to-back VSC supplied from grid voltage of 6.9kV. In comparison with the conventional snubber, isolated inductor snubber has a fewer number of components and improved efficiency leading to a reliable and efficient wind turbine systems.

  • PDF