• 제목/요약/키워드: IGCC(Integrated Gasification Combined Cycle)

검색결과 110건 처리시간 0.03초

증기연계 공정을 가지는 석탄가스화 복합발전플랜트의 성능해석 (Performance Analysis of the Integrated Gasification Combined Cycle Power Plant with Steam Integration)

  • 이찬
    • 한국유체기계학회 논문집
    • /
    • 제12권1호
    • /
    • pp.43-50
    • /
    • 2009
  • Waste heat recovery process designs and performance analyses are conducted on the IGCC(Integrated Gasification Combined Cycle) power plants integrated with two different coal gasification and gas cleanup processes by Shell and GE/Texaco. Through the analysis results, the present study provides the steam integration concept between the HRSG and the chemical processes of IGCC power plant, and investigates the effect of steam integration on the power generation of IGCC power plant. The present simulation results show less steam power output and higher overall IGCC efficiency of the Shell-based power plant than the GE/Texaco.

석탄 IGCC 다이내믹 시뮬레이션에 관한 연구 (Study on the Dynamic Simulation for an Integrated Coal Gasification Combined Cycle)

  • 주용진;김시문;이민철;김미영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.106.2-106.2
    • /
    • 2010
  • IGCC (Integrated Gasification Combined Cycle) plants are among the most advanced and effective systems for electric energy generation. From a control perspective, IGCC plants represent a significant challenge: complex reactions, highly integrated control to simultaneously satisfy production, controllability, operability and environmental objectives. While all these requirements seem clearly to demand a multivatiable, model predictive approach, not many applications can be easily found in the literature. This paper describes the IGCC dynamic simulation that is capable of simulating plant startup, shutdown, normal, and abnormal operation and engineering studies. This high fidelity dynamic models contain the detailed process design data to produce realistic responses to process operation and upset. And the simulation is used by engineers to evaluate the transient performance and produce graphical information indicating the response of the process under study conditions.

  • PDF

Syngas및 수소를 연료로 사용하는 발전용 가스터빈 성능해석 (Performance Analysis of a Gas Turbine for Power Generation using Syngas as a Fuel)

  • 이종준;차규상;손정락;김동섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3241-3246
    • /
    • 2007
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed with hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of the syngas to the performance of a gas turbine in a combined cycle power plant. For this purpose, a commercial gas turbine is selected and its performance characteristics are analyzed with three different fuels, i.e., natural gas ($CH_4$), syngas and hydrogen. It is found that different heating values of those fuels and chemical compositions in their combustion gases are the causes in the different performance characteristics.

  • PDF

Performance Analysis of Gas Turbine for Large-Scale IGCC Power Plant

  • Joo, Yong-Jin;Kim, Mi-Yeong;Park, Se-Ik;Seo, Dong-Kyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권3호
    • /
    • pp.415-419
    • /
    • 2016
  • As the need for clean coal technology has grown, so has the global research and development efforts into integrated gasification combined cycle (IGCC) plants. An IGCC plant couples a gas turbine to a gasification block. Various technical and economic problems exist in designing such a system. One such problem is the difficulty in realizing economies of scale because the single-train flow capacity of commercial IGCC synthetic gas turbine plants is limited; the capacity does not exceed a net power rating of 300 MW. To address this problem, this study modeled and simulated a synthetic gas turbine with the goal of evaluating the feasibility of a 500 MW or larger IGCC plant. First, a gas turbine with the best output and efficiency was chosen for use with natural gas. The turbine was modeled using GateCycle (a simulation tool), and the integrity of the model validated by comparing the result to the design value. Next, off-design modeling was carried out for a gas turbine with synthetic gas based on its on-design model, and the result was compared with the study result of the gas turbine manufacturer. The simulation confirmed that it is possible to create a large capacity IGCC plant by undertaking the remodeling of a gas turbine designed to use natural gas into one suitable for synthetic gas.

석탄가스화 복합화력 발전용 가스터빈 성능해석 (Performance Analysis of a Gas Turbine for Integrated Gasification Combined Cycle)

  • 이종준;차규상;손정락;김동섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.771-774
    • /
    • 2007
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed with hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of the syngas to the performance of a gas turbine in a combined cycle power plant. For this purpose, a commercial gas turbine is selected and its performance characteristics are analyzed with syngas. It is found that different heating values of those fuels and chemical compositions in their combustion gases are the causes in the different performance characteristics. Also, Changing of turbine inlet Mass flow lead to change the turbine matching point, in the event the pressure ratio is changed.

  • PDF

Theoretical Study for Hydrogen Production from an Integrated Gasification Combined Cycle System

  • Lee, Sang-Sup
    • Environmental Engineering Research
    • /
    • 제16권1호
    • /
    • pp.35-39
    • /
    • 2011
  • An integrated gasification combined cycle (IGCC) system has been attracting attention due to its increased energy conversion efficiency and ability to treat various carbonaceous materials. IGCC is also expected to play an important role in the future supply of hydrogen energy. The use of a palladium-based membrane to separate the hydrogen from the synthesis gas stream has been intensively studied due to its exceptional hydrogen-separating capability. However, theoretical research on hydrogen separation is still an unfamiliar area in Korea. First-principle density functional theory was applied in this study to investigate the dissociative adsorption of hydrogen onto a palladium surface. The stability of hydrogen on the surface was theoretically evaluated with various adsorption configurations, partial pressures and temperatures. Further theoretical and experimental studies were also suggested to find a more hydrogen-selective material.

역청탄과 아역청탄의 석탄가스환 및 IGCC 성능검토

  • 안달홍;나중희;송규소;김남호;김종진;지평삼
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1994년도 추계학술발표회 초록집
    • /
    • pp.68-77
    • /
    • 1994
  • The Integrated Gasification Combined Cycle(IGCC) power plant is one of Clean Coal Technology to meet the demand for clean and efficient electric power for the 21st century. This study is to investigate the impacts of changes in coal quality to the performances of gasification processes and IGCC plants. The selection of the most economic coal is an important attribute for the IGCC power generation technology. The performances of gasification processes was predicted, and compared with the results of Shell coal gasification demonstrantions. The IGCC performances with bituminous and sub-bituminous coal were predicted as well. It is obtained that the bituminous coal is superior to the sub-bituminous coal for IGCC power generation.

  • PDF

Pilot 규모 2단 형상 가스화기 운전특성 실험 (The operation Characteristic of Pilot-scale 2-Stage Coal gasifier)

  • 홍진표;정재화;서석빈;지준화;이승종;정석우
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.528-532
    • /
    • 2009
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed with hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of gasification process to type and structure of gasifier. For this purpose, the performance characteristics of gasification reaction are analyzed with the operation characteristic of pilot-scale 2-stage coal gasifier. It is found that gasification reaction, floating characteristic of melted slag, particle stick of inside of the gasifier, particle stick and deposit of Syngas cooler are the causes in the different performance characteristics.

  • PDF

석탄가스화를 이용한 수소생산 기술현황 및 프로젝트 분석 (A Study on Technology Status and Project of Hydrogen Production from Coal Gasificiation)

  • 고승모;장호창
    • 한국가스학회지
    • /
    • 제27권1호
    • /
    • pp.1-12
    • /
    • 2023
  • 석탄가스화는 석탄을 불완전 연소하여 수소와 일산화탄소로 이루어진 합성가스를 생성하는 공정이다. 기 존 석탄 연소와 달리 질소 산화물이나 황 산화물이 배출되지 않고 미세먼지 발생량이 적어 석탄을 청정하게 이용할 수 있으며 합성가스를 통해 부가적인 화학물질을 생산할 수 있다. 석탄가스화는 합성가스 생산방식에 따라 석탄가스화복합화력발전(Integrated Gasification Combined Cycle, IGCC), 플라즈마 석탄가스화, 지하석탄 가스화(Underground Coal Gasification, UCG)로 분류된다. 최근에는 합성가스의 수소를 활용하기 위하여 일산화탄소를 수소로 전환하는 수성가스전환(Water Gas Shift, WGS) 반응기와 이산화탄소를 포집하는 설비를 결합하는 사례가 늘고 있다. 본 연구에서는 석탄가스화와 합성가스를 이용한 수소 생산 방법에 대하여 정리하였으며 현재 진행되고 있는 석탄가스화를 이용한 수소 생산 프로젝트를 조사하였다.