• 제목/요약/키워드: IGBT chopper

검색결과 16건 처리시간 0.023초

KTX-1 고속전철의 병렬부하형 IGBT 제동초퍼장치 설계에 관한 연구 (A New Design on the Parallel Load Type IGBT Brake Chopper System for KTX-1 High Speed Train)

  • 윤차중;노명규;이을재
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.424-430
    • /
    • 2013
  • This paper presents a new design works for the braking chopper system which is included in the propulsion system of KTX high speed train. Due to the current fed type synchronous motors used in the propulsion system, some different behaviors are shown comparing to the voltage type other chopper systems. Specially this chopper system acts either braking controlling or regenerative power controlling system with a parallel resistive load in the propulsion system. In this paper, an improved simple high power IGBT brake chopper system has proposed which is able to be replaced with an existing complicated GTO chopper system. The analytical approaches to the parallel load type current chopper system and the propper snubber circuits calculation were explained in this paper to control new chopper system. In addition, the thermal resistance of the cooling system for power dissipation of IGBT modules was calculated also. Finally several PC simulations have been done to clarify its availability.

IGBT 기반 인덕턴스 및 문턱전압 변화에 따른 초퍼 회로의 연구 (A Study on Chopper Circuit for Variation of Inductance and Threshold Voltage based on IGBT)

  • 노영환
    • 한국철도학회논문집
    • /
    • 제13권5호
    • /
    • pp.504-508
    • /
    • 2010
  • 고전압 절연 게이트 바이폴라 트랜지스터 (IGBT)의 개발로 기존의 GTO(Gate Turnoff Thyristor)가 적용되는 분야에서 더 효율적인 새로운 소자로 인정받고 있다. IGBT는 금속 산화막 반도체 트랜지스터(MOSFET)와 바이폴라 전력 트랜지스터의 장점을 결합한 소자이다. IGBT의 전기적 특성의 변화는 주로 입력단자에 MOSFET와 출력단자에 PNP 트랜지스터의 특성에 달려있다. IGBT의 가장 중요한 설계변수중의 하나인 문턱전압의 변화는 방사선이 존재하는 환경에 게이트 산화막(oxide)에서 전하포획(charge trapping)에 의해 발생되고 에너지 손실을 야기시킨다. 또한, 에너지 손실은 초퍼회로의 인덕턴스 값이 변화될 때 발생됨을 연구한다. 본 논문에서 IGBT의 전기적 특성을 SPICE로 시뮬레이션하고, IGBT 기반 인덕턴스와 문턱전압의 변화에 따른 전기적 특성을 분석하고자 한다.

AC Chopper를 이용한 다등용 조광제어 시스템에 관한 연구 (Dimming Control System for Multi-Fluorescent Lamp Using AC Chopper Technique)

  • 정동열;박종연
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권4호
    • /
    • pp.177-182
    • /
    • 2003
  • We have proposed the dimming controller using the AC chopper technique. The AC chopper changes the amplitude of the input source voltage with the same frequency. The conventional dimming controller is operated by controlling voltage phase with the triac. It has bad characteristics of the input current THD and the input power factor But the dimming controller using the ac chopper technique has a low current THD and a good power factor. The developed dimming controller is consist of the IGBT and the low pass filter. The system is operated by the variation circuit of the input source voltage and the microprocessor.

AC Chopper를 이용한 다등용 조광제어 시스템에 관한 연구 (Dimming Control System for Multi-Fluorescent Lamp Using AC Chopper Technique)

  • 정동열;박종연
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권4호
    • /
    • pp.177-177
    • /
    • 2003
  • We have proposed the dimming controller using the AC chopper technique. The AC chopper changes the amplitude of the input source voltage with the same frequency. The conventional dimming controller is operated by controlling voltage phase with the triac. It has bad characteristics of the input current THD and the input power factor But the dimming controller using the ac chopper technique has a low current THD and a good power factor. The developed dimming controller is consist of the IGBT and the low pass filter. The system is operated by the variation circuit of the input source voltage and the microprocessor.

Fuzzy Technique based Chopper Control for Slip Energy Recovery System with Twelve-Pulse Converter

  • Tunyasrirut, S.;Ngamwiwit, J.;Furuya, T.;Yamamoto, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.509-514
    • /
    • 2004
  • This paper introduces the modified slip energy recovery system in order to improve its power factor and to reduce harmonics of line current waveforms. Twelve pulse line commutated converter with the chopper type IGBT is applied where the chopper is applied across the DC terminal and the chopped DC is fed to the converter operating as an inverter and then passed through the wye-wye and delta-wye transformer circuit. This scheme leads to be able to adjust the speed of the motor by the duty cycle of the chopper operating in PWM mode. The fuzzy logic controller is also introduced to the modified slip energy recovery system for keeping the motor speed to be constant when the load varies. The experimental results in testing the 0.22 kW wound rotor induction motor from no-load condition to rated condition show the effectiveness of the proposed control scheme.

  • PDF

A High Efficiency and High Power Chopper Circuit QRAS using Soft Switching under Test Evaluation at 8kW

  • Tsuruta Yukinori;Kawamura Atsuo
    • Journal of Power Electronics
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 2006
  • This paper is a record of the study on a high efficiency and high power chopper based on the new soft switching method QRAS (Quasi~resonant Regenerating Active Snubber) designed for a Fuel Cell Electric Vehicle (FCEV). This power chopper is basically proposed for 25kHz soft switching. To confirm the practicality and effectiveness of the converter, the fabrication of a prototype-model using IGBTs was completed. Additionally, a 8kW rating test, a light load test, a current discontinuous mode test and a stable operation resonance test was completed. The circuit geometry, the basic operation, and the 8kW one-tenth-prototype test results are reported with a $97.5\%$ efficiency measurement.

고주파 결합 인덕터 직렬 공진형 ZCS-PFM 초퍼 제어 방식을 이용한 새로운 승압형 DC-DC 컨버터 (A Novel Boost DC-DC Converter using High Frequency Coupled Inductor Series Resonant ZCS-PFM Chopper Control Method)

  • 김홍신;허영환;문상필;박한석
    • 전기학회논문지P
    • /
    • 제66권2호
    • /
    • pp.63-68
    • /
    • 2017
  • This paper proposes a new non-isolated DC conversion circuit topology of the voltage source coupled inductor series resonant high-frequency PFM controlled boost chopper type DC-DC power converter using two in one IGBT power module, which can efficiently operate under a principle of zero current soft switching for wide output regulation voltage setting ranges and wide fluctuation of the input DC side voltage as well as the load variation ranges. Its steady state operating principle and the output voltage regulation characteristics in the open-loop-based output voltage control scheme without PI controller loop are described and evaluated from theoretical and experimented viewpoints. Finally, in this paper the computer-aided simulation steady-state analysis and the experimental results are presented in order to prove the effectiveness and the validity of voltage regulation characteristics of the proposed series resonant zero current soft switching boost chopper type DC-DC power converter circuit using IGBTs which is based on simple pulse frequency modulation strategy more than, 20kHz.

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber and Its Performance Evaluations

  • Ogura, Koki;Chandhaket, Srawouth;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제4권1호
    • /
    • pp.46-55
    • /
    • 2004
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge resonant snubber in the load-side which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of ZVS-PWM boost chopper-fed DC-DC converter proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory, the temperature performance of IGBT module, the actual power conversion efficiency and the EMI of radiated and conducted emissions. And then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn off mode transition with the aid of an additional lossless clamping diode loop, and reduced the EMI conducted emission in this paper.

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber

  • Ogura K.;Chandhaket S;Nagai S;Ahmed T;Nakaoka M
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.223-226
    • /
    • 2003
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge-resonant snubber which is used for power conditioner such as solar photovoltaic generation and fuel cell generation. The experimental results of boost chopper fed ZVS-PWM DC-DC converter are evaluated. In audition to its switching voltage and current waveforms, and the switching v-i trajectory of the power devices are discussed and compared with the conventional hard switching DC-DC converter treated here. The temperature performance of IGBT module,, efficiency, and EMI noise characteristics of this ZVS-PWM DC-DC converter using IGBTs are measured and evaluated from an experimental point of view.

  • PDF

A Gate Drive Circuit for Low Switching Losses and Snubber Energy Recovery

  • Shimizu, Toshihisa;Wada, Keiji
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.259-266
    • /
    • 2009
  • In order to increase the power density of power converters, reduction of the switching losses at high-frequency switching conditions is one of the most important issues. This paper presents a new gate drive circuit that enables the reduction of switching losses in both the Power MOSFET and the IGBT. A distinctive feature of this method is that both the turn-on loss and the turn-off loss are decreased simultaneously without using a conventional ZVS circuit, such as the quasi-resonant adjunctive circuit. Experimental results of the switching loss of both the Power MOSFET and the IGBT are shown. In addition, an energy recovery circuit suitable for use in IGBTs that can be realized by modifying the proposed gate drive circuit is also proposed. The effectiveness of both the proposed circuits was confirmed experimentally by the buck-chopper circuit.