• Title/Summary/Keyword: IGBT Inverter

Search Result 306, Processing Time 0.025 seconds

Development of a Interior Permanent Magnet Synchronous Motor and Driver for 2-Motor Driven Electric Vehicle (전기자동차용 매입형 영구자석동기전동기 및 제어기 개발)

  • 박정우;구대현;김종무;김흥근
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.305-308
    • /
    • 1998
  • This paper describes a development of interior permanent magnet synchronous motor (IPMSM) and driver for electric vehicle (EV) which is driven by 2 motors without differential gear. A inverter is designed to drive 2 motors with 6 legs IGBT switches in a control board. Also vector control algorithm is implemented with maximum torque control method in the constant torque region and field weakening control method considering inverter capacity in the constant power region. Prototype IPMSM and inverter have been developed. To verify dynamic characteristics of the those about torque to speed and efficiency etc. We are making an experiment on that. Though that is not completed, we will show results to be acquired.

  • PDF

A New Control Scheme for a Class-D Inverter with Induction Heating Jar Application by Constant Switching Frequency

  • Choi Won-Suk;Park Nam-Ju;Lee Dong-Yun;Hyun Dong-Seok
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.272-281
    • /
    • 2005
  • In this paper, a simple power control scheme for a constant frequency Class-D inverter with a variable duty cycle is proposed. It is more suitable and acceptable for high- frequency induction heating (IH) jar applications. The proposed control scheme has the advantages of not only wide power regulation range but also ease of control output power. Also it can achieve a stable and efficient Zero-Voltage-Switching (ZVS) in a whole load range. The control principles of the proposed method are described in detail and its validity is verified through simulated and experimental results on 42.8kHz IGBT for induction heating rated on 1.6kW with constant frequency variable power.

Implemented of Photovoltaic Inverter System by a Maximum Power Point Tracking (최대전력점 추적에 의한 태양광 인버터 시스템 구현)

  • Song, In-Sun;Kim, Sil-Keun;Jung, Seoung-Hwan;Hong, Soon-Ill
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.224-225
    • /
    • 2007
  • In this paper proposed method of maximum power point tracking using boost converter for a connected single phase inverter. The maximum power point tracking control is based on generated circuit control MOSFET switch of two boost converter and single phase inverter uses predicted current control to control four IGBT's switch in full bridge. The predicted current control provide current with sinusoidal wave shape and inphase with voltage.

  • PDF

Evaluation of Insulation Performance for Stator Winding of the Inverter Driven Induction Motor According to Impregnation Methods (함침기법에 따른 인버터 구동 유도전동기 고정자 권선의 절연성능 평가)

  • Hwang, Don-Ha;Kang, Dong-Sik;Lee, In-Woo;Kim, Dong-Hee;Lee, Kwang-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.487-492
    • /
    • 2006
  • Inverter driven induction motors with high speed switching and advanced PWM techniques are widely used for variable speed applications. Recently, the insulation failures of stator winding have attracted much concern due to high dv/dt of IGBT PWM inverter output. In this paper, the detailed insulation test results of 26 low-voltage induction motors are presented. Six different types of insulation techniques are applied to 26 motors. The insulation characteristics are analyzed with partial discharge, inception voltage, AC current, and dissipation factor tests. Also, breakdown tests by high voltage pulses are performed. From the above test data the effects due to different wires and insulation techniques on the insulation characteristics of low-voltage induction motors are compared and analyzed. The insulation technique to enhance the insulation strength is suggested from the test results.

  • PDF

APSCAD/Application:Single-phaseUtility-ConnectableInverterModelforPVorFCSystem (PSCAD응용:태양광및연료전지발전시스험의계통연재를 위한 단상인버터모델)

  • Campbell Ryan;Lee Jong Su;Shin Myong Chul;Kim Hak Man
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.276-279
    • /
    • 2004
  • The purpose of this paper is to describe and demonstrate how a utility-connectable inverter for photovoltaic or fuel-cell applications can be well modeled using PSCAD/EMTDC. In this paper, a single-phase IGBT inverter using SPWM is modeled. Simple voltage magnitude and phase controls are implemented using PSCAD's Pl controller, PLL, and a 'user defined' component called Modulo (found in their extensive collection of example circuits). The circuit model also takes advantage of PSCAD's interpolated firing pulse option, which provides improved simulation results by preventing errors from being introduced when switches fire between time simulation steps. Additionally, SCAD's Online Frequency Scanner for FFT is utilized for a demonstration of PSCAD's frequency-domain analysis capabilities.

  • PDF

Control of Grid-Connected Power Conversion Systems using an Active NPC Inverter (Active NPC 인버터를 적용한 계통연계 전력변환 시스템의 제어)

  • Kim, Sung-Won;Seo, Dong-Woo;Lee, Kyo-Beum
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.155-156
    • /
    • 2018
  • This paper presents a control method for grid-connected Active-NPC inverter systems. NPC (Neutral Point Clamped) is widely used in power conversion systems. NPC has a loss of switching elements and voltage imbalance. Active NPC has been proposed to overcome these drawbacks. ANPC changed the neutral diode to IGBT to reduce the switching loss. This paper modeled a grid-connected Acitve-NPC inverter systems and analyzed its performance. DSOGI PLL was used as a phase control method for precise control of grid link voltage. The proposed method is verified by PSIM simulation.

  • PDF

Unified design approach for single- and 3-phase input air conditioning systems using SiC devices

  • Kim, Simon;Balasubramaniasarma, Swaminathan;Ma, Kwokwai;Chung, Daewoong
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.205-208
    • /
    • 2020
  • This paper examines the approach, enabled by using SiC power devices, to unify the inverter design for central air conditioning (CAC) system for both single- and 3-phase input, and reduce the PFC inductor size to be PCB-mountable. By using SiC-instead of Si-diode in PFC stage, it is possible to increase the switching frequency from 16kHz to 60kHz to reduce the required PFC inductance from 0.93mH to 0.25mH, thus enable PCB-mounting of inductor. With the next step of using 1200V SiC MOSFET instead of Si-IGBT, the DC link voltage can be boosted from 311Vdc to 550Vdc in PFC stage, allowing the inverter and compressor used in 3-phase input CAC be used for single-phase input as well. Furthermore, using SiC MOSFET in inverter stage can further reduce total loss system total loss to 200.8 W. Simulation and experimental results are presented in the paper.

  • PDF

Partial O-state Clamping PWM Method for Three-Level NPC Inverter with a SiC Clamp Diode

  • Ku, Nam-Joon;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1066-1074
    • /
    • 2015
  • This paper presents the reverse recovery characteristic according to the change of switching states when Si diode and SiC diode are used as clamp diode and proposes a method to minimize the switching loss containing the reverse recovery loss in the neutral-point-clamped inverter at low modulation index. The previous papers introduce many multiple circuits replacing Si diode with SiC diode to reduce the switching loss. In the neutral-point-clamped inverter, the switching loss can be also reduced by replacing device in the clamp diode. However, the switching loss in IGBT is large and the reduced switching loss cannot be still neglected. It is expected that the reverse recovery effect can be infrequent and the switching loss can be considerably reduced by the proposed method. Therefore, it is also possible to operate the inverter at the higher frequency with the better system efficiency and reduce the volume, weight and cost of filters and heatsink. The effectiveness of the proposed method is verified by numerical analysis and experiment results.

Induction Heating Water Heater using Dual Mode Phase Shifted ZVS-PWM High Frequency Resonant Inverter (듀얼 모드 위상 시프트 ZVS PWM 제어 고주파 공진형 인버터를 이용한 IH 온수기)

  • Lee, Sang-Wook;Ryu, Yeoi-Joung;Woo, Kyung-Il;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.82-89
    • /
    • 2018
  • This paper presents a novel prototype of dual mode control based phase shift ZVS PWM high frequency load resonant inverter with lossless snubber capacitors in addition to a single active auxiliary resonant snubber for electromagnetic induction heating(IH) foam metal based consumer fluid dual packs(DPA) heater. The operating principle in steady state and unique features of this voltage source soft switching high frequency inverter circuit topology are described in this paper. The lossless snubber and auxiliary active resonant snubber assisted constant frequency phase shift ZVS PWM high frequency load resonant inverter employing IGBT power modules actually is capable of achieving zero voltage soft commutation over a widely specified power regulation range from full power to low power. The steady state operating performances of this dual mode phase shift PWM series load resonant high frequency inverter are evaluated and discussed on the basis of simulation and experimental results for induction heated foam metal heater which is designed for compact and high efficient moving fluid heating appliance in the consumer pipeline systems.

A New Solar Energy Conversion System Implemented using Single Phase Inverter (새로운 방식의 단상 인버터를 이용한 태양광 시스템 구현)

  • Hong Jeng-Pyo;Kim Tae-Hwa;Won Tae-Hyun;Kwon Soon-Jae;Hong Soon-Ill;Kim Jong-Dal
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.488-491
    • /
    • 2006
  • In this paper proposed method of maximum power point tracking using boost converter for a connected single phase inverter with photovoltaic system. The maximum power point tracking control is based on generated circuit control MOSFET switch of boost converter and single phase inverter uses predicted current control to control four IGBT's switch in full bridge. The predicted current control provide current with sinusoidal wave shape and inphase with voltage. The generation control circuit allows each photovoltaic module to operate independently at peak capacity, simply by detecting of the output power of the system. Furthermore, the generation control circuit attenuates low-frequency ripple voltage, which is caused by the full-bridge inverter, across the photovoltaic modules. Consequently, the output power of system is increased due to the increase in average power generated by the photovoltaic modules. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation.

  • PDF