• Title/Summary/Keyword: IFC Schema Extension

Search Result 12, Processing Time 0.021 seconds

The Development Method of IFC Extension Elements using Work Breakdown Structure in River Fields (작업분류체계를 활용한 하천분야 IFC 확장 개발방안)

  • Won, Jisun;Shin, Jaeyoung;Moon, Hyoun-Seok;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.77-84
    • /
    • 2018
  • As the application of BIM (Building Information Modeling) to the civil sector has become practical, and mandatory for road projects, the standardization, development of systems, etc. for the application and operation of BIM are required. In particular, it is important to develop BIM data standards for producing, sharing and managing the lifecycle data of civil facilities because they are commonly national public facilities. The BIM data standards have been developed by utilizing or extending IFC (Industry Foundation Classes), which is an international standard, but schema extensions of river facilities has not been developed thus far. This study proposes an approach to an IFC extension for river facilities using the WBS (Work Breakdown Structure) as a fundamental study for IFC-based schema extension in the river field. For this purpose, the research was carried out as follows. First, the IFC extension development method was selected to represent the river facilities by analyzing the existing IFC structure and previous research cases for the IFC extension. Second, extended elements of the river facilities were identified through an analysis of the WBS and classified according to the high-level structure of the IFC schema. Third, the classified elements were arranged based on the IFC hierarchy and the IFC schema extension for river facilities was established. Based on the suggested extension method of IFC schema, this study developed the schema by defining the element components and parts of river facilities, such as distribution flow elements and deriving their detailed types and properties.

Development of Extended IFC Schema for BIM-based Korean Construction Standards Review (BIM 기반 국가건설기준 검토 수행을 위한 확장형 IFC 구조 개발)

  • Suk, Chae-Hyun;Jeong, Yu-Jeong;Yu, Young-Su;Koo, Bon-Sang;Ryu, Sang-Hun
    • Journal of KIBIM
    • /
    • v.14 no.2
    • /
    • pp.35-49
    • /
    • 2024
  • IFC, a neutral standard data model for BIM, ensures data interoperability across BIM applications but struggles with adapting to diverse construction standards across countries and regions. In practice, the standard IFC schema does not include the entity and attribute information necessary for reviewing Korean Construction Standards. To overcome this, this study developed an extended IFC schema that incorporates design and construction standards data specifically for bridge. The extended IFC schema defines entities for representing types of bridges, structures, and elements, and Psets for containing relevant standards information. This schema is customized to be compatible with both Korean Design Standards (KDS) and Korean Construction Specifications (KCS). Additionally, based on the extended IFC schema, a specialized extension module was developed, capable of embedding design and construction standards data by element within IFC Physical File. Through this module, the necessary design and construction standards were inserted into specific elements.

Methodology of Fire Safety IFC Schema Extension through Architectural WBS Hierarchy Analysis (건축 WBS 위계 분석을 통한 소방 IFC 스키마 확장 방법론에 관한 연구)

  • Kim, Tae-Hoon;Won, Jung-Hye;Hong, Soon-Min;Choo, Seung-Yeon
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.70-79
    • /
    • 2022
  • As BIM(Building Information Modeling) technology advances in architecture around the world, projects and industries using BIM are increasing. Unlike previous developments that were limited to buildings, BIM is now spreading to other fields such as civil engineering and electricity. In architecture, BIM is used in the entire process from design to maintenance of a building, and IFC(Industry Foundation Classes), a neutral format with interoperability, is used as an open BIM format. Since firefighting requires intuitive 3D models for evacuation and fire simulations, BIM models are desirable. However, due to the BIM model, which was developed centered on building objects, there are no objects and specific properties for fire evacuation in the IFC scheme. Therefore, in this study, when adding a new object in the firefighting area to the IFC schema, the IFC interoperability is not broken and the building WBS(Work Breakdown Structure) is analyzed with a hierarchical system similar to the IFC format to define the scope for a new object and the firefighting part within of the building WBS to derive a firefighting HBS(Hierarchy Breakdown Structure) with the extension of the object-oriented IFC file. And according to HBS, we propose an IFC schema extension method. It is a methodology that allows BIM users to instantly adapt the IFC schema to their needs. Accordingly, the methodology derived from this study is expected to be expanded in various areas to minimize information loss from IFC. In the future, we will apply the IFC extension methodology to the actual development process using HBS to verify that it is actually applicable within the IFC schema.

Extension of the IFC Schema for Road Subsidiary Facility (도로 부대시설 수용을 위한 IFC 스키마 확장 개발)

  • Cho, Geun-Ha;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7385-7392
    • /
    • 2014
  • Extension IFC schema of subsidiary facilities were developed for the purpose of establishing an information model standard for roads. The IFC entities, types and properties for subsidiary facilities were defined through an analysis of the road design documents for the extraction physical component and design information. The converter and viewer for applying the new schema were then developed. Subsidiary facilities BIM models were converted to new IFC models to verify the research results. Standard BIM-based delivery and verification systems are enabled by using a standard model converted by new schema. Furthermore, it can establish an open BIM environment using an IFC over the entire life cycle of the civil engineering project.

The Extension of IFC Model Schema for Geometry Part of Road Drainage Facility (도로 배수시설의 형상정보 표현을 위한 IFC 정보모델 확장 방안)

  • Cho, Geun-Ha;Won, Ji-Sun;Kim, Jin-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5987-5992
    • /
    • 2013
  • The authors suggest the extension IFC schema of drainage facilities for the purpose of establishment the information model standard for the roads. IFC entities, types and properties for drainage facilities are defined by the analysis of road design documents for extraction physical component and design information IFC schema is able to be extended through the result of this research. Futhermore, IFC for additional road facilities is able to be used as construction process control, quantity take off, and simulation applications with the interoperability of the IFC.

A Study on the Method of Extracting Shape and Attribute Information for Port IFC Viewing (항만 IFC Viewing을 위한 형상 및 속성 정보 추출 방법에 관한 연구)

  • Kim, Keun-Ho;Park, Nam-Kyu;Joo, Cheol-Beom;Kim, Sung-Hoon
    • Journal of KIBIM
    • /
    • v.11 no.3
    • /
    • pp.67-74
    • /
    • 2021
  • An IFC file is dependent on the IFC schema. Because of this relationship, most IFC-using software reads and interprets the IFC File by employing an early binding method, which uses a standard IFC schema. In the case of most open sources, early binding methods using standard IFC schema have a problem that they cannot express extra information of IFC File out of extended IFC schema. Also, in the case of previous studies, they suggested schema extension, such as adding attribute information to the schema, rather than the interpretation of IFC File. This study research on method of extracting shape and attribute information was conducted by analyzing the IFC File produced through the Port schema, which is an extended IFC schema. Three objects were created using the reference relationship between the Port schema definition and the IFC entity, and, at the end, the three objects were combined into one object. It has been confirmed that the shape and property data were express properly while delivering the combined object to the viewer. The process is possible because of the method of matching IFC schema and IFC File, which is dependent on IFC schema but not early binding method. However, this method has some drawbacks, such that contemporaneously generated many objects consume many memory spaces. Future research to investigate that issue further is needed.

Development of Two Dimensional Extension Model far IFC2.x2 Model in the Construction Field (건설 분야 전자도면의 모델 기반 교환을 위한 IFC2.x2모델의 2차원 형상정보모델의 확장 개발에 관한 기초 연구)

  • Kim I.H.;Seo J.C.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.2
    • /
    • pp.121-132
    • /
    • 2005
  • There have been several efforts for the investigation of the formal development team which was formed in the IAI to develop a common 2D standard specification between ISO/STEP and IAI/IFC since 2002. As a result, a drafting model has been included in the IFC2.x2 model. However, to be used actively in the construction practice for construction drawing exchange, the IFC model should be extended to the paper space for multiple views, drawing output, and delivery of drawings. Therefore, in this paper, the methodology of relating STEP and IFC has been investigated and schema extension of paper space(drawing sheet, presentation view, view pipeline), complex entity(leader), and dimension(associative) have been achieved. The resulting, IFC model will enable a basic harmonization with KOSDIC. SCADEC, and STEP-CDS by retaining the current IFC architecture. In addition, IT systems for the construction industry can be beneficial from the developed data model.

Civil Infrastructure Information Modeling Method Based on Extended IFC Entities using BIM Authoring Software (BIM 소프트웨어를 활용한 토목 시설물 IFC 확장요소기반의 정보모델링 방안)

  • Lee, Sang-Ho;Park, Sang I.;Kwon, Tae-Ho;Seo, Kyung-Wan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.77-86
    • /
    • 2017
  • Industry Foundation Classes(IFC) is the core product schema for ensuring the interoperability of information in Building Information Modeling(BIM) environment. However, since current IFC is mainly focused on building structure. there are limitations in the generation of functional information of components when applied to civil infrastructures. Previous studies have proposed IFC-based new entities for the civil infrastructures, it takes long time to support them in BIM authoring software packages. In this study, we proposed practical rules to apply IFC-based information modeling using BIM authoring software and additional new entities for the civil infrastructure through attributes and information mapping. The availabilities of proposed method were examined using the rail and sleeper information models based on an extended IFC data schema for the railway infrastructures.

Concrete Reinforcement Modeling with IFC for Automated Rebar Fabrication

  • LIU, Yuhan;AFZAL, Muhammad;CHENG, Jack C.P.;GAN, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.157-166
    • /
    • 2020
  • Automated rebar fabrication, which requires effective information exchange between model designers and fabricators, has brought the integration and interoperability of data from different sources to the notice of both academics and industry practitioners. Industry Foundation Classes (IFC) was one of the most commonly used data formats to represent the semantic information of prefabricated components in buildings, whereas the data format utilized by rebar fabrication machine is BundesVereinigung der Bausoftware (BVBS), which is a numerical data structure exchanging reinforcement information through ASCII encoded files. Seamless transformation between IFC and BVBS empowers the automated rebar fabrication and improve the construction productivity. In order to improve data interoperability between IFC and BVBS, this study presents an IFC extension based on the attributes required by automated rebar fabrication machines with the help of Information Delivery Manual (IDM) and Model View Definition (MVD). IDM is applied to describe and display the information needed for the design, construction and operation of projects, whereas MVD is a subset of IFC schema used to describe the automated rebar fabrication workflow. Firstly, with a rich pool of vocabularies practitioners, OmniClass is used in information exchange between IFC and BVBS, providing a hierarchy classification structure for reinforcing elements. Then, using International Framework for Dictionaries (IFD), the usage of each attribute is defined in a more consistent manner to assist the data mapping process. Besides, in order to address missing information within automated fabrication process, a schematic data mapping diagram has been made to deliver IFC information from BIM models to BVBS format for better data interoperability among different software agents. A case study based on the data mapping will be presented to demonstrate the proposed IFC extension and how it could assist/facilitate the information management.

  • PDF

The Information Modeling Method based on Extended IFC for Alignment-based Objects of Railway Track (선형중심 객체 관리를 위한 확장된 IFC 기반 철도 궤도부 정보모델링 방안)

  • Kwon, Tae Ho;Park, Sang I.;Seo, Kyung-Wan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.339-346
    • /
    • 2018
  • An Industry Foundation Classes(IFC), which is a data schema developed focusing on architecture, is being expanded to civil engineering structures. However, it is difficult to create an information model based on extended IFC since the BIM software cannot provide support functions. To manage a railway track based on the extended IFC, this paper proposed a method to create an alignment-centered separated railway track model and convert it to an extended IFC-based information model. First, railway track elements have been classified into continuous and discontinuous structures. The continuous structures were created by an alignment-based software, and discontinuous structures were created as independent objects through linkage of the discretized alignment. Second, a classification system and extended IFC schema for railway track have been proposed. Finally, the semantic information was identified by using the property of classification code and user interface. The availability of the methods was verified by developing an extended IFC-based information model of the Osong railway site.