• Title/Summary/Keyword: IEEE802.11 WLAN

Search Result 392, Processing Time 0.029 seconds

A Design of LDPC Decoder for IEEE 802.11n Wireless LAN (IEEE 802.11n 무선 랜 표준용 LDPC 복호기 설계)

  • Jung, Sang-Hyeok;Shin, Kyung-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.31-40
    • /
    • 2010
  • This paper describes a LDPC decoder for IEEE 802.11n wireless LAN standard. The designed processor supports parity check matrix for block length of 1,944 and code rate of 1/2 in IEEE 802.11n standard. To reduce hardware complexity, the min-sum algorithm and layered decoding architecture are adopted. A novel memory reduction technique suitable for min-sum algorithm was devised, and our design reduces memory size to 25% of conventional method. The LDPC decoder processor synthesized with a $0.35-{\mu}m$ CMOS cell library has 200,400 gates and memory of 19,400 bits, and the estimated throughput is about 135 Mbps at 80 MHz@2.5v. The designed processor is verified by FPGA implementation and BER evaluation to validate the usefulness as a LDPC decoder.

A Study on a packet scheduling scheme to enhance throughput in IEEE 802.11e WLAN system (IEEE 802.11e 무선 LAN 시스템에서 Throughput 증대를 위한 패킷 스케줄링 기법 연구)

  • Jeon, Hyeong-Ik;Jang, Jae-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.421-425
    • /
    • 2005
  • The increasing number of wireless subscribers who can use internet service any time and any place have caused wireless communications networks to flourish. However, since total communication channel bandwidth for wireless communications is limited, it is very important to find the solution for maximizing the channel utilization. Thus, in this work we propose a QoS packet scheduler for IEEE 802.11e EDCA scheme which is able to maximize the channel throughput with changing the CW value considering wireless channel condition. This proposed scheme is evaluated with NS-2 network simulator under various environments and it is easily shown from the numerical results that the proposed scheme provides better performance than that of the original IEEE 802.11e scheme.

  • PDF

Implementation of IEEE 802.11n MAC using Design Methodology (통합된 구현 방식을 이용한 IEEE 802.11n MAC의 설계)

  • Chung, Chul-Ho;Lee, Sun-Kee;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4B
    • /
    • pp.360-367
    • /
    • 2009
  • In this paper, we propose a design methodology of IEEE 802.11n MAC which aims to achieve the higher throughput of more than 100Mbps in downlink as measured at the MAC-SAP and present the implementation results of MAC using the proposed design methodology. With our proposed methodology, different from the conventional design flow which has the separate codes for the protocol validation, for the network simulation, and for the system implementation, the unified code can be used for the network simulation and the implementation of software and hardware. Our MAC architecture is partitioned into two parts, Upper-layer MAC and Lower-layer MAC, in order to achieve the high efficiency for the new features of IEEE 802.11n standard. They are implemented in software and hardware respectively. The implemented MAC is tested on ARM based FPGA board.

Asymmetric RTS/CTS for Exposed Node Reduction in IEEE 802.11 Ad Hoc Networks

  • Matoba, Akihisa;Hanada, Masaki;Kanemitsu, Hidehiro;Kim, Moo Wan
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.107-118
    • /
    • 2014
  • One interesting problem regarding wireless local area network (WLAN) ad-hoc networks is the effective mitigation of hidden nodes. The WLAN standard IEEE 802.11 provides request to send/clear to send (RTS/CTS) as mitigation for the hidden node problem; however, this causes the exposed node problem. The first 802.11 standard provided only two transmission rates, 1 and 2 Mbps, and control frames, such as RTS/CTS assumed to be sent at 1 Mbps. The 802.11 standard has been enhanced several times since then and now it supports multi-rate transmission up to 65 Mbps in the currently popular 802.11n (20 MHz channel, single stream with long guard interval). As a result, the difference in transmission rates and coverages between the data frame and control frame can be very large. However adjusting the RTS/CTS transmission rate to optimize network throughput has not been well investigated. In this paper, we propose a method to decrease the number of exposed nodes by increasing the RTS transmission rate to decrease RTS coverage. Our proposed method, Asymmetric Range by Multi-Rate Control (ARMRC), can decrease or even completely eliminate exposed nodes and improve the entire network throughput. Experimental results by simulation show that the network throughput in the proposed method is higher by 20% to 50% under certain conditions, and the proposed method is found to be effective in equalizing dispersion of throughput among nodes.

DCF Throughput Analysis of the MAC Layer in the IEEE 802.11 Wireless LAN (IEEE 802.11a 무선 LAN의 MAC 계층DCF 처리율 분석)

  • Jung, Jin-Wook;Ha, Eun-Sil;Lee, Ha-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.509-515
    • /
    • 2005
  • This paper explores the throughput of DCF protocol with both the traffic intensity and MSDU size at the MAC layer in the 802.11a wireless LAN. By exploring the throughput of DCF protocol with the data rate of 6Mbps, 12 Mbps, 24 Mbps and 54 Mbps, we find the fact that the less the data rate be, the higher the throughput be. We also find, from the throughput calculation by means of traffic intensity and MSDU size, that the longer the MSDU size is, the higher the throughput is. We also found the traffic intensity that the throughput is at the maximum point with the fixed MSDU size.

  • PDF

Spatial Reuse in IEEE 802.11ax: Whether and How to Use in Practice

  • Zhu, Deqing;Luan, Shenji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4617-4632
    • /
    • 2021
  • IEEE 802.11ax is a protocol being developed for high-density Wireless Local Area Networks (WLAN). Several algorithms have been proposed to improve the level of spatial reuse applied in IEEE 802.11ax. However, these algorithms are tentative and do not specify how to select the transmit power and carrier sense threshold in practice; It is unclear when and why the tuned parameters lead to better network performance. In this paper, we restricted the scale of transmit power tuning to prevent the case of backfire in which spatial reuse will result in transmission failure. If the restrictions cannot be satisfied, spatial reuse will be abandoned. This is why we named the proposed scheme as Arbitration based Spatial Reuse (ASR). We quantified the network performance after spatial reuse, and formulate a corresponding maximum problem whose solution is the optimal carrier sense threshold and transmit power. We verified our theoretical analysis by simulation and compared it with previous studies, and the results show that ASR improves the throughput up to 8.6% compared with 802.11ax. ASR can avoid failure of spatial reuse, while the spatial reuse failure rate of existing schemes can up to 36%. To use the ASR scheme in practice, we investigate the relation between the optimal carrier sense threshold and transmit power. Based on the relations got from ASR, the proposed Relation based Spatial Reuse (RSR) scheme can get a satisfactory performance by using only the interference perceived and the previously found relations.

IEEE 802.11a Technnical Analysis and Research for Development of Unmanned Vehicle System (무인자동차 시스템 개발을 위한 IEEE 802.11a 기술 분석 및 연구)

  • Kim, Young-Hyuk;Choi, Sang-Wook;Lim, Il-Kwon;Choi, Jeong-Dan;Lee, Jae-Kwang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.108-111
    • /
    • 2009
  • In this paper, the development of unmanned vehicle systems to analysis applicable communications and alternative IEEE 802.11a. IEEE 802.11b/g uses the 2.4GHz. So, using the 5GHz OFDM in IEEE 802.11a interference phenomenon better. IEEE 802.11a has a maximum speed of 54Mbps. Indoors and apartment parking on experiment to soft roaming, hard roaming. Test equipments are AP four units(RSU), reliable results for the AP one unit Bridge, Switch one unit, one server notebook, one notebook(OBU), one car. Use Softwares are Wireshark, Jperf, Ping and million second transfer was used to develop the program. So the actual car was similar to the environment. With the results of the experiment for the unmanned vehicle systems will provide the best method.

  • PDF

Q-Learning based Collision Avoidance for 802.11 Stations with Maximum Requirements

  • Chang Kyu Lee;Dong Hyun Lee;Junseok Kim;Xiaoying Lei;Seung Hyong Rhee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.1035-1048
    • /
    • 2023
  • The IEEE 802.11 WLAN adopts a random backoff algorithm for its collision avoidance mechanism, and it is well known that the contention-based algorithm may suffer from performance degradation especially in congested networks. In this paper, we design an efficient backoff algorithm that utilizes a reinforcement learning method to determine optimal values of backoffs. The mobile nodes share a common contention window (CW) in our scheme, and using a Q-learning algorithm, they can avoid collisions by finding and implicitly reserving their optimal time slot(s). In addition, we introduce Frame Size Control (FSC) algorithm to minimize the possible degradation of aggregate throughput when the number of nodes exceeds the CW size. Our simulation shows that the proposed backoff algorithm with FSC method outperforms the 802.11 protocol regardless of the traffic conditions, and an analytical modeling proves that our mechanism has a unique operating point that is fair and stable.