• Title/Summary/Keyword: IEEE802.11 MAC

Search Result 394, Processing Time 0.03 seconds

A Survey on IEEE 802.11 MAC Analytical Modeling for MAC Performance Evaluation

  • Heo, Ung;Yu, Changfang;You, Kang-Soo;Choi, Jae-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.119-127
    • /
    • 2011
  • The paper surveys various analytical models for IEEE 802.11 medium access control protocols and critically discusses recent issues developing in wireless mobile ad hoc networks and their MACs. The surveyed MAC protocols include the standard IEEE 802.11 MAC suites such as IEEE 802.11 DCF, IEEE 802.11 PCF, IEEE 802.11e EDCA, and IEEE 802.11 ad hoc mode; and also the newer, de facto MAC protocols. We study the analytic models of the standard MAC suites followed by the newer analytic models that have been published in recent years. Also, the paper tries to include most of current literatures discussing analytic modeling of MAC in conjunction to some critical issues such as contention among ad hoc nodes, hidden terminal problems, and real-time service support.

MAC Throughput Analysis of MAC Aggregation and Block ACK in IEEE 802.11n (MAC 프레임 집합 전송과 블록 ACK 사용에 따른 IEEE 802.11n 수율 분석)

  • Moon, Kuk-Hyun;Chung, Min-Young;Cho, Kang-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.467-469
    • /
    • 2006
  • In wireless network environments, as users' demands on high-speed data communications due to increase of multi-media services, the necessity of new high-speed WLAN technologies has appeared. Nowaday, IEEE is standardizing a new WLAN protocol caned as IEEE 802.11n. To effectively use wireless resources, IEEE 802.11n introduces MAC aggregation function which is similar to that in IEEE 802.11e. In case of transmitting several frames without MAC aggregation, the frames include individual frame header and trailer, and their corresponding acknowledgement frames can appear on wireless link. However, if they are aggregated into single MAC frame, we can reduce the number of used bits due to frame headers/trailers and also remove redundant acknowledgement frames. In this paper, we explain two different MAC frame aggregation methods for IEEE 802.11e and IEEE 802.11n and evaluate their throughput by simulations.

  • PDF

MAC Performance Improvement by Selective Use of DCF and PCF Protocols for IEEE 802.11 Wireless LANs (무선랜에서 망 상태에 따른 DCF와 PCF 프로토콜의 선택적인 사용을 통한 MAC 성능 향상)

  • Choi, Woo-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.89-95
    • /
    • 2011
  • The distributed coordination function (DCF) and point coordination function (PCF) protocols are the basic MAC protocols for legacy IEEE 802.11, IEEE 802.11a, IEEE 802.11b, IEEE 802.11e, IEEE 802.11g and IEEE 802.11n wireless LANs. When the DCF protocol is used for the various versions of IEEE 802.11 wireless LANs, the MAC performance seriously degrades due to the collisions among the stations (STAs) as more and more STAs attempt to transmit their data frames. On the other hand, the PCF MAC performance becomes poor when many STAs exist in IEEE 802.11 wireless LANs, however, only small number of STAs actually attempt to transmit their data frames. In this paper, we propose the algorithm for improving the MAC performance by selectively using the DCF and PCF protocols according to the state of IEEE 802.11 wireless LANs. Numerical examples are presented to show the MAC performance improvement by the selective use of the DCF and PCF protocols according to the network state.

IEEE 802.16 MAC protocol for coexistence with IEEE 802.11 in shared Frequency band (공용 주파수 대역에서 IEEE 802.11과의 공존을 위한 IEEE 802.16 MAC 프로토콜)

  • Lee, Seung-Hwan;Rhee, Seunghyong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1230-1232
    • /
    • 2009
  • 본 논문에서는 공용 주파수 대역에서 IEEE 802.11 WLAN과 IEEE 802.16 WMAN과의 효율적인 공존을 위한 MAC 프로토콜을 제안한다. 제안한 프로토콜은 IEEE 802.11 WLAN과 IEEE 802.16 WMAN이 주파수를 공유하며 지리적으로 공존하는 환경을 가정하였다. IEEE 802.16 WMAN의 BS(Base station)와 SS(Subscriber station)의 통신에서 DL(Down Link)구간에서는 SS가 자신의 DL-burst에서 IEEE 802.11의 CTS를 보내 주변의 IEEE 802.11 디바이스들의 통신을 지연시킴으로써 IEEE 802.11 WLAN 및 IEEE 802.16 WMAN이 공존하면서도 충돌을 방지해 전송 효율을 높일 수 있다. 본 논문에서 제안하는 MAC 프로토콜의 동작에 대해 설명하고 시뮬레이션을 통해 기존 방법보다 향상된 성능을 유지함을 보인다.

Analysis of IEEE 802.11n MAC and PHY Integration Method for High Throughput Performance based on NS-2 (고속 처리량을 위한 NS-2 기반 IEEE 802.11n MAC/PHY 연동 기법분석)

  • Kim, Joo-Seok;Lee, Yun-Ho;Song, Jae-Su;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.67-75
    • /
    • 2009
  • IEEE 802.11 WLAN(Wireless Local Area Network) standard is currently developing with increased wireless internet demand. Study trends of IEEE 802.11n for high throughput show two aspects, enhanced system throughput using aggregation among packets in MAC(Medium Access Control) layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PRY(Physical) layer. But, no one demonstrates IEEE 802.11n system performance results considering MAC and PRY connection. This paper adapts A-MPDU(Aggregation-MAC Protocol Data Unit) method in MAC layer and MIMO in PRY layer for IEEE 802.11n system. Consequently, Simulation results show enhanced throughput and data rates compared to existing system. Also, We use NS-2(Network Simulator-2) considering MAC and PRY connection for reality.

Design and Implementation of IEEE 802.11i MAC Layer (IEEE 802.11i MAC Layer 설계 및 구현)

  • Hong, Chang-Ki;Jeong, Yong-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.640-647
    • /
    • 2009
  • IEEE 802.11i is an amendment to the original IEEE 802.11/b,a,g standard specifying security mechanism by stipulating RSNA for tighter security. The RSNA uses TKIP(Temporal Key Integrity Protocol) and CCMP(Counter with CBC-MAC Protocol) instead of old-fashioned WEP(Wired Equivalent Privacy) for data encryption. This paper describes a design of a communication security engine for IEEE 802.11i MAC layer. The design includes WEP and TKIP modules based on the RC4 encryption algorithm, and CCMP module based on the AES encryption algorism. The WEP module suffices for compatibility with the IEEE 802.11 b,a,g MAC layer. The CCMP module has about 816.7Mbps throughput at 134MHz, hence it satisfies maximum 600Mbps data rate described in the IEEE 802.11n specifications. We propose a pipelined AES-CCMP cipher core architecture, which has lower hardware cost than existing AES cores, because CBC mode and CTR mode operate at the same time.

Performance Evaluation of EDCA Channel Access Scheme at IEEE 802.11e WLANs (IEEE 802.11e 무선 LAN에서 EDCA 기법의 성능 분석)

  • Jeon, Hyeong-Ik;Jang, Jae-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.528-532
    • /
    • 2005
  • As the current IEEE 802.11 wireless LAN standard provides the unified channel access procedure for each traffic service without considering its own traffic characteristics, it is difficult to get its differentiated service qualities at IEEE 802.11 wireless LAN system. To solve this limit, IEEE 802.11e standard that can provide differentiated service to each traffic is under preparation. In this study, we implemented IEEE 802.11e EDCA channel access scheme with NS-2 simulator, and showed its numerical results in various system environments with using average delay and throughput as performance measures.

  • PDF

THE MAC LAYER PACKET SERVICE TIME DISTRIBUTIONS OF DCF IN THE IEEE 802.11 PROTOCOL

  • Han Dong-Hwan;Park Chul-Geun
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.501-515
    • /
    • 2006
  • The IEEE 802.11 protocol is the most mature technology for WLANs(Wireless Local Area Networks). However, as the number of stations increases, the delay and throughput performance of IEEE 802.11 MAC(Medium Access Control) degrades severely. In this paper, we present the comprehensive performance analysis of IEEE 802.11 MAC protocol by investigating the MAC layer packet service time when arrival packet sizes have a general probability distribution. We obtain the discrete probability distribution of the MAC layer service time. By using this, we analyze the system throughput and the MAC layer packet service time of IEEE 802.11 MAC protocol in wireless LAN environment. We take some numerical examples for the system throughput and the mean packet service time for several special distributions of arrival packet sizes.

Impact of legacy DCF stations on voice service using EDCA scheme in IEEE 802.11 wireless LANs (IEEE 802.11 무선 랜에서 EDCA 방식의 음성 서비스에 대한 기존 DCF 단말의 영향 분석)

  • Hwang, Gyung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.996-1002
    • /
    • 2009
  • The EDCA scheme in IEEE 802.11 MAC protocols was adopted to support QoS of each traffic. The impact of legacy DCF stations on EDCA voice service is studied using extensive simulations. The maximum number of voice sessions are obtained in cases that IEEE 802.11b and IEEE 802.11a physical layers are used.

Performance Analysis of IEEE 802.11n System adapting Frame Aggregation Methods (Frame Aggregation 기법을 적용한 IEEE 802.11n 시스템 성능 분석)

  • Lee, Yun-Ho;Kim, Joo-Seok;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.515-527
    • /
    • 2009
  • IEEE 802.11n is an ongoing next-generation WLAN(Wireless Local Area Network) standard that supports a very high-speed connection with more than 100Mb/s data throughput measured at the MAC(Medium Access Control) layer. Study trends of IEEE 802.11n show two aspects, enhanced data throughput using aggregation among packets in MAC layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PHY(Physical) layer. But, the former doesn't consider wireless channel and the latter doesn't consider aggregation among packets for reality. Therefore, this paper analyzes data throughput for IEEE 802.11n considering MAC and PHY connection. A-MPDU(Aggregation-MAC Protocol Data Unit) and A-MSDU(Aggregation-MAC Service Unit) is adapted considering multi-service in MAC layer, WLAN MIMO TGn channel using SVD(Singular Value Decomposition) is adapted considering MIMO and wireless channel in PHY layer. Consequently, Simulation results shows throughput between A-MPDU and A-MSDU. Also, We use Ns-2(Network simulator-2) for reality.