• Title/Summary/Keyword: IEEE 802.22

Search Result 109, Processing Time 0.021 seconds

TDM based MAC protocol for throughput enhancement in dense wireless LANs area (무선 랜 밀집 지역의 전송률 향상을 위한 시분할 매체 접근 제어 프로토콜)

  • Kwon, Hyeok-Jin;Hwang, Gyung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.534-541
    • /
    • 2018
  • The number of stations existing in the same wireless channel is increasing due to the spread of the wireless LAN devices. CSMA/CA, a conventional wireless LAN protocol, uses a random backoff method. In the random backoff scheme, collision between stations is frequent in a dense region where the number of stations existing in the same channel is several tens or more, and the performance of the performance degradation of such a protocol, the IEEE 802.11ah standard proposed a Restricted Access Window(RAW) wireless access method. RAW improves performance by limiting the number of concurrent access stations by dividing the stations into several groups. In this paper, we propose a method to improve the performance of channel connection by using new group creation, group removal and group relocation algorithm according to traffic change by improving existing RAW method.

A Study on the Wireless Sensor Network Routing Method and Fault Node Detection for Production Line (생산라인에 적용을 위한 무선 센서 네트워크 라우팅방식 및 고장노드 검출에 대한 연구)

  • Park, Jeong?Hyeon;Seo, Chang-Jun
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1104-1108
    • /
    • 2018
  • IIoT applies IoT to industrial sites to monitor factors such as production, manufacturing, and safety, and it is a solution that allows the worker to easily manage the site. An important technology element in this IIoT is a technology that collects information on industrial sites and delivers reliable information to managers using sensors. Therefore, general industrial sites use wired network methods such as Ethernet and RS485 to deliver information. However, there are limitations to the problem of infrastructure costs and to the wide range of line constructions in network deployment. Therefore, in this paper, the network of IEEE 802.15.4 Ad-Hoc wireless sensors is deployed on production lines with machine tools. In addition, we describe the routing method considering machine tool layout and sensor node failure detection algorithm.

Spectral Efficiency of WRAN Spectrum Overlay in the TV White Space

  • Leem, Cha-Sik;Kim, Sang-Won;Kim, Chang-Joo;Kang, Sung-Chul;Lee, Jai-Yong
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.871-873
    • /
    • 2008
  • In this letter, we investigate the spectral efficiency of IEEE 802.22 wireless regional area network (WRAN) spectrum overlay when it is used in TV white space. Since 2004, when the FCC published the notice of proposed rule making 04-186 to make use of unused TV spectrum, the IEEE 802.22 working group has been standardizing specifications for WRAN operations. There have been a few papers investigating the spectral efficiency of this, but their analyses were limited to the cases for various guard distances between WRAN base stations. Since WRAN base station (BS) power for WRAN service may differ from country to country, it is important to analyze the spectral efficiency for various WRAN BS powers. In this letter, we analyze the spectral efficiency of WRAN spectrum overlay as a function of the power of WRAN BSs. The simulation results show that spectral efficiency decreases as the power of WRAN BSs and guard distances increase.

  • PDF

Performance Analysis and MODEM Implementation of the HDR-WPAN System (HDR-WPAN 시스템의 모뎀 구현 및 성능분석)

  • Ju, Won-Ki;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.97-103
    • /
    • 2009
  • In this paper, the structure and detailed specifications of the HDR-WPAN physical layer have been analyzed and the block module of transmitter and receiver have been also designed, and analyzed the performance as well. In the process of transmitter design, it concentrated on all possibility of modulation of QPSK, DQPSK and 16/32/64QAM-TCM, which could be available for mode selection due to the transmission rate. In addition to the receiver module, DQPSK and TCM decoding algorithm is mainly concerned. After designing the transceiver MODEM using VHDL, we have programmed on the platform board and verified the functions of the MODEM. Some experimental results showed that it can be considered a possibility of data communication without error over SNR 22dB.

  • PDF

Optimal Power and Spectrum Allocation Scheme in Multicell WRAN (Multicell WRAN에서의 최적 전력 및 주파수 할당 기법)

  • Hwang, In-Kwan;Lim, Yeon-Jun;Cho, Hae-Keun;Song, Myoung-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.666-675
    • /
    • 2008
  • The IEEE 802.22 standard is being developed with the target of improving the efficiency of spectrum utilization and importing the new wireless communication service. The WRAN standard based on Cognitive Radio is being processed for sharing TV bands. In this paper, the efficient spectrum allocation scheme and the optimal power allocation scheme, Partial Constant Power Water Filling (PCPWF), are proposed to maximize the channel capacity and spectrum efficiency and minimize the interference between adjacent cells. And we maximize the system throughput and fairness by using proposed dynamic cell plan that efficiently allocates channel. The results of the simulations are presented to verify the utilization of our proposed scheme.

Implementation of Spectrum Sensing Module based on IEEE 802.22 WRAN (IEEE 802.22 WRAN 기반 스펙트럼 센싱 모듈 구현)

  • Lee, Hyun-So;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.3
    • /
    • pp.39-48
    • /
    • 2009
  • The Spectrum Sensing technology is the core technology of the Cognitive Radio (CR) system that is one of the future wireless communication technologies. This is the technology that temporarily allocates the frequency bandwidth by scanning surrounding wireless environments to keep licensed terminals and search the unused frequency bandwidth. In this paper, we implement the efficient Spectrum Sensing methods based on CR technology in an embedded board. The DVB-H signal with the 6MHz bandwidth is used as the RF input signal. And we confirm the Spectrum Sensing result using Modified Periodogram Method, Welch's Method, SCF Method. And also, We examine the execution speed of each of detailed functions and the performance of Spectrum Sensing methods on TI320C6416 DSP board inserted in an embedded board.

Low-power Frequency Offset Synchronization for IEEE 802.11a Using CORDIC Algorithm (CORDIC을 이용한 IEEE 802.11a용 저전력 주파수 옵셋 동기화기)

  • Jang, Young-Beom;Han, Jae-Woong;Hong, Dae-Ki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.66-72
    • /
    • 2009
  • In this paper, an efficient frequency offset synchronization structure for OFDM(Orthogonal Frequency Division Multiplexing) is proposed. Conventional CORDIC(Coordinate Rotation Digital Computer) algorithm for frequency offset synchronization utilizes two CORDIC hardware i.e., one is vector mode for phase estimation, the other is rotation mode for compensation. But proposed structure utilizes one CORDIC hardware and divider. Through simulation, it is shown that hardware implementation complexity is reduced compared with conventional structures. The Verilog-HDL coding and front-end chip implementation results for the proposed structure show 22.1% gate count reduction comparison with those of the conventional structure.

Capacity Analysis of Internet Protocol Television (IPTV) over IEEE 802.11ac Wireless Local Area Networks (WLANs)

  • Virdi, Chander Kant;Shah, Zawar;Levula, Andrew;Ullah, Imdad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.327-333
    • /
    • 2022
  • Internet Protocol Television (IPTV) has emerged as a personal entertainment source for home users. Streaming IPTV content over a wireless medium with good Quality of Service (QoS) can be a challenging task as IPTV content requires more bandwidth and Wireless Local Area Networks (WLANs) are susceptible to packet loss, delay and jitter. This research presents the capacity of IPTV using User Datagram Protocol (UDP) and TCP Friendly Rate Control (TFRC) over IEEE 802.11ac WLANs in good and bad network conditions. Experimental results show that in good network conditions, UDP and TFRC could accommodate a maximum of 78 and 75 Standard Definition Television (SDTV) users, respectively. In contrast, 15 and 11 High-Definition Television (HDTV) users were supported by UDP and TFRC, respectively. Performance of UDP and TFRC was identical in bad network conditions and same number of SDTV and HDTV users were supported by TFRC and UDP. With background Transmission Control Protocol (TCP) traffic, both UDP and TFRC can support nearly the same number of SDTV users. It was found that TFRC can co-exist fairly with TCP by giving more throughput to TCP unlike UDP.