• Title/Summary/Keyword: IEEE 802.15.4a channel

Search Result 128, Processing Time 0.026 seconds

A Rapid Signal Acquisition Scheme for Noncoherent UWB Systems (비동기식 초광대역 시스템을 위한 고속 신호 동기획득 기법)

  • Kim Jae-Woon;Yang Suck-Chel;Choi Sung-Soo;Shin Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.331-340
    • /
    • 2006
  • In this Paper, we propose to extend the TSS-LS(Two-Step Search scheme with Linear search based Second step) scheme which was already proposed by the authors for coherent UWB(Ultra Wide Band) systems, to rapid and reliable acquisition of noncoherent UWB systems in multipath channels. The proposed noncoherent TSS-LS employing simple energy window banks utilizes two different thresholds and search windows to achieve fast acquisition. Furthermore, the linear search is adopted for the second step in the proposed scheme to correctly find the starting point in the range of effective delay spread of the multipath channels, and to obtain reliable BER(Bit Error Rate) performance of the noncoherent UWB systems. Simulation results with multipath channel models by IEEE 802.15.3a show that the proposed two-step search scheme can achieve significant reduction of the required mean acquisition time as compared to general search schemes. ]n addition, the proposed scheme achieves quite good BER performance for large signal-to-noise ratios, which is favorably comparable to the case of ideal perfect timing.

Enhancing the Image Transmission over Wireless Networks through a Novel Interleaver

  • El-Bendary, Mohsen A.M.;Abou-El-Azm, A.E.;El-Fishawy, N.A.;Shawki, F.;El-Tokhy, M.;Abd El-Samie, F.E.;Kazemian, H.B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1528-1543
    • /
    • 2011
  • With increasing the using of wireless technologies in essential fields such as the medical application, this paper proposes different scenarios for the transmission of images over wireless networks. The paper uses the IEEE ZigBee 802.15.4 for applying the proposed schemes. It is a Wireless Personal Area Network (WPAN). This paper presents a novel chaotic interleaving scheme against error bursts. Also, the paper studies the proposed interleaver with the convolutional code with different constraint lengths (K). A comparison study between the standard scheme and proposed schemes for image transmission over a correlated fading channel is presented. The simulation results show the superiority of the proposed chaotic interleaving scheme over the traditional schemes. Also, the chaotic interleaver packet-by-packet basis gives a high quality image with (K=3) and reduces the need for the complex encoder with K=7.

Performance Analysis of Real-time Retransmission in LR-WPAN (LR-WPAN에서 실시간 재전송 성능분석)

  • Cho, Moo-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.5
    • /
    • pp.21-30
    • /
    • 2011
  • In this paper, we propose a real-time service based on retransmission slot in low rate WPAN. In the proposed scheme, during the communication period of the beacon-enabled mode in LR-WPAN standard, a special GTSs is dynamically assigned for retransmission of the packet that fails during a real-time service such as voice. This provides a time diversity in the severe channel error environments to support the required QoS. Analytical results show that this scheme achieves a much higher throughput and better transmission success rate per GTS slot than conventional schemes such as a common reserved scheme in LR WPAN.

Design and Performance Analysis of a new MAC Protocol for Providing Real-time Traffic Information using USN (USN 기반 실시간 주행 상황 정보 제공을 위한 MAC 설계 및 성능 분석)

  • Park, Man-Kyu;So, Sang-Ho;Lee, Jae-Yong;Lim, Jae-Han;Son, Myung-Hee;Kim, Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.5
    • /
    • pp.38-48
    • /
    • 2007
  • In ubiquitous environment, sensor networks that sense and transmit surrounding data without human intervention will become more important. If sensors are installed for detecting vehicles and measuring their speed in the road and that real-time information is given to drivers, it will be very effective for enhancing safety and controlling traffic in the road. In this paper, we proposed a new reliable and real-time sensor MAC protocol between AP and sensor nodes in order to provide real-time traffic flow information based on ubiquitous sensor networks. The proposed MAC allocates one TDMA slot for each sensor node on the IEEE 802.15.4 based channel structure, introduces relayed communication for distant sensors, and adopts a frame structure that supports retransmission for the case of errors. In addition, the proposed MAC synchronizes with AP by using beacon and adopts a hybrid tracking mode that supports economic power consumption according to various traffic situations, We implemented a simulator for the proposed MAC by using sim++ and evaluated various performances. The simulation results show that the proposed MAC reduces the power consumption and reveals excellent performance in real-time application systems.

An Adaptive Back-off Algorithm in Beacon-Enabled LR-WPAN (비콘 기반 저속 WPAN에서의 적응적 백오프 알고리즘)

  • Park, Sung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.8
    • /
    • pp.735-742
    • /
    • 2016
  • The Low-Rate WPAN is a short range wireless networking technology characterized by low-rate, low-power, low complexity and low-cost. The LR-WPAN controls wireless channel access among network devices based on the contention-based CSMA/CA algorithm. Therefore, frame collisions may take place at any time, leading to the severe degradation of network performance. This paper proposes a new algorithm that changes back-off periods adaptively in the CSMA/CA process depending on network conditions, resulting in the reduction of frame collisions. Throughout extensive simulations, it turns out that varying the back-off periods dynamically shows better performance than maintaining the fixed back-off periods.

Design of a Timing Estimator Algorithm for 2.45GHz LR-WPAM Receiver (2.45GHz LR-WPAN 수신기를 위한 Timing Estimator 알고리즘의 설계)

  • Kang Shin-Woo;Do Joo-Hyun;Park Tha-Joon;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.282-290
    • /
    • 2006
  • In this paper, we propose an enhanced Timing Estimator algorithm for 2.45GHz LR-WPAN receiver. Because an expensive and highly efficient oscillator can't be used for low-cost implementation, a Timing Estimator algorithm having stable operation in the channel environment with center frequency tolerance of 80 ppm is required. To enhance the robustness to frequency offset and the stability of receiver performance, multiple delay differential filter is adopted. By utilizing the characteristic that the correlation result between the output signal of Multiple delay differential filter and reference signal is restricted on the In-phase part of the correlator output, a coherent detection scheme instead of the typical noncoherent one is adopted for Timing Estimator. The application of the coherent detection scheme is suitable for LR-WPAN receiver aimed at low-cost, low-power, and low-complexity, since it can remove performance degradation due to squaring loss of I/Q squaring operation and decrease implementation complexity. Computer simulation results show that the proposed algorithm achieved performance improvement compared with the differential detection-based noncoherent scheme by 2dB in average.

Topology-aware Packet Size and Forward Rate for Energy Efficiency and Reliability in Dynamic Wireless Body Area Networks (동적 무선 인체 통신망의 에너지 효율과 신뢰성을 위한 토폴로지 인식 기반 패킷 크기 및 포워딩 비율 결정 방법)

  • Nguyen-Xuan, Sam;Kim, Dongwan;An, Sunshin
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.9-18
    • /
    • 2014
  • The sensors attached on/in a person are moved since human body frequency changes their activity, therefore in wireless body area networks, nodal mobility and non-line-of-sight condition will impact on performance of networks such as energy efficiency and reliable communication. We then proposed schemes which study on forwarding decisions against frequent change of topology and channel conditions to increase reliable connections and improve energy efficiency. In this work, we control the size of packets, forwarding rate based on ratio of input links and output links at each node. We also robust the network topology by extending the peer to peer IEEE 802.15.4-based. The adaptive topology from chain-based to grid-based can optimal our schemes. The simulation shows that these approaches are not only extending network lifetime to 48.2 percent but also increase around 6.08 percent the packet delivery ratio. The "hot spots" problem is also resolved with this approach.

Implementation of an Efficient Slotted CSMA/CA Anti-collision Protocol for Active RFID System (능동형 RFID 시스템을 위한 효율적인 Slotted CSMA/CA 충돌방지 프로토콜의 구현)

  • Joo, Jin-Hoon;Chung, Sang-Hwa
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1013-1022
    • /
    • 2012
  • Tag collection is one of the major concerns in radio frequency identification(RFID) system. All tags in RFID reader's transmission range send response message back to the reader in response to collection request message on the given rf channel. When multiple tags respond simultaneously, tag-collision may occur. Tag-collision problem is one of the most important issues in active RFID performance. To mitigate this problem, frame slotted ALOHA(FSA) anti-collision protocol is widely used in active RFID system. Several studies show that the maximum system efficiency of FSA anti-collision protocol is 36.8%. In this paper, we propose an efficient slotted CSMA/CA protocol to improve tag collection performance. We compare our protocol to the FSA anti-collision protocol. For the experiment, an 433MHz active RFID system is implemented, which is composed of an RFID reader and multiple tags. We evaluated the tag collection performance using one RFID reader and 40 tags in the real test bed. The experimental result shows that proposed protocol improves the tag collection time, round and collision probability by 18%, 37.4% and 77.8%, respectively.