• Title/Summary/Keyword: IDF(Inverse diffusion flame)

Search Result 4, Processing Time 0.017 seconds

Nano-Soot Particle Formation in Ethene/Air Inverse Diffusion Flame (에틸렌/공기 역 확산화염에서의 나노 매연 입자 생성)

  • Lee, Eui-Ju;Shin, Hyun-Joon;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1101-1109
    • /
    • 2004
  • Experimental measurements of flame structure and soot characteristics were performed fur ethene inverse diffusion flames (IDF). IDF has been considered as the excellent flow field to study the incipient soot because soot particle do not experience the oxidation process. In this study, LIF image clarified the reaction zone of IDF with OH signal and PAH distribution. laser light scattering technique also identified the being of soot particle. To address the degree of soot maturing, C/H ratio and morphology of soot sample were investigated. From these measurements, the effect of flow residence time and temperature on soot inception could be suggested, and more details on soot characteristic in the IDF was determined according to fuel dilution and flame condition. The fuel dilution results in a decrease of temperature and enhancement of residence time, but the critical dilution mole fraction is existed for temperature not to effect on soot growth. Also, the soot inception evolved on the specific temperature and its morphology are independent of the fuel dilution ratio of fuel.

Nano-Soot Particle Formation in Inverse Diffusion Flames (인버스 확산화염에서의 나노 수트 입자 생성)

  • Lee, Eui-Ju;Shin, Hyun-Joon;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.19-26
    • /
    • 2003
  • Experimental measurements of flame structure and soot characteristics were performed for ethene inverse diffusion flames (IDF). IDF has been considered as the excellent flow field to study the incipient soot because soot particle do not experience the oxidation process. In this study, LIF image clarified the reaction zone of IDF with OH signal and PAH distribution. laser light scattering technique also identified the being of soot particle. To address the degree of soot maturing, C/H ratio and morphology of soot sample were investigated. From these measurements, the effect of flow residence time and temperature on soot inception could be suggested, and more details on soot characteristic in the IDF was determined according to fuel dilution and flame condition. The fuel dilution results in a decrease of temperature and enhancement of residence time, but the critical dilution mole fraction is existed for temperature not to effect on soot growth. Also, the soot inception evolved on the specific temperature and its morphology are independent of the fuel dilution ratio of fuel.

  • PDF

Development of Oxygen Combustion Burner for Industrial Gasification and Smelting Furnace (산업용 가스화 용융로를 위한 산소 버너의 개발)

  • Bae, Soo-Ho;Lee, Uen-Do;Shin, Hyun-Dong;Kim, Soung-Hyoun;Gu, Jae-Hoi;Yoo, Young-Don
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.170-178
    • /
    • 2005
  • Multi-hole type oxygen combustion burner was developed for industrial gasification and smelting furnace. We investigated characteristics of flame, radiation transfer, and soot emission in the convectional oxygen burner with respect to the feeding condition of fuel and oxygen. Regarding the results of the conventional burner, we designed new burners which have larger fuel consumption rate and radiation heat transfer. We changed the size and hole number and shape of the exit plane of the burner. In addition, the performance of the burner was tested with respect to the feeding condition of the fuel and air: Normal Diffusion flame(NDF) and Inverse Diffusion Flame(IDF). We investigated the flame configuration, radiation heat transfer, and soot formation by using a CCD camera, heat flux meter, and Laser Induced Incadescence(LII), respectively. The stable operating condition was obtained by the flame configuration and the flame of the burner which has dented exit plane was more stable in whole operating conditions. The characteristics of radiative heat transfer were sensitive to the feeding condition of reactants and the flame of 75% primary oxygen and 25% secondary oxygen of the IDF case shows maximum radiation heat transfer. The soot volume fraction of the flame was measured in the axial direction of the flame and the amount of soot volume fraction is proportion to the radiation heat transfer. As a result, we can get the optimal operating condition of the newly designed burner which enhances the characteristics of flame stabilization and radiation heat transfer.

  • PDF

An Experimental Study on the Flame Appearance and Heat Transfer Characteristics of Acoustically Excited Impinging Inverse Diffusion Flames (음향 가진된 충돌 역 확산화염의 화염형상과 열전달 특성에 관한 실험적 연구)

  • Kang, Ki-Joong;Lee, Kee-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3647-3653
    • /
    • 2010
  • An experimental investigation of the flame appearance and heat transfer characteristics in both unexcited and excited impinging inverse diffusion flames with a loud speaker has been performed. The flame is found to become broader and shorter (in length) with acoustic excitation. The heat flux at the stagnation point is increased with the acoustic excitation. The acoustic excitation is more effective in lean conditions than in rich conditions. The reasons for these behaviors are that acoustic excitation improves the entrainment of surrounding air into the jet. From this study, it is found that the maximum increase of 57% in the total heat flux is obtained at the stagnation point of $\Phi$=0.8. Therefore, it is ascertained that the excitation combustion can be adopted with effective instruments as a method for improving heat transfer in impinging jet flames.