• Title/Summary/Keyword: IDEA algorithm

Search Result 578, Processing Time 0.027 seconds

Design of the High-Speed Encryption Chip of IDEA(International Data Encryption Algorithm) (IDEA의 고속 암호칩 설계)

  • 이상덕
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.8 no.4
    • /
    • pp.21-32
    • /
    • 1998
  • 통신 및 컴퓨터 시스템의 처리 속도가 높아짐에 따라 정보 보호를 위해서 고속의 데이터처리가 반드시 요구되어진다. 따라서 본 논문에서는 국제 표준 암호알로기즘의 하나인ISDEA(International Data Encryption Algorithm)를 고속 연산을 위하여 알고리즘을 분석하고 암호화 수행시간을 감소하기 위하여 파이프라인 처리를 하며, 서브키 생성시의 연산회수를 줄이기 위하여 서브키 블록을 EEPROM 으로 구현하였다. 전체적인 시스템은 VHDL(VHSIC Hardware Description Language)을 사용하여 설계하였다. IDEA 알고리듬은 EDA tool인 Synopsys를 사용하여 Sunthesis하였으며, Xilinx의 FPGA XC4052XL을 이용하여 One CHip화 시켰다. 입력 클럭으로 20Mhz를 사용하였을 때, data arrival time은 687.07ns였으며, 109.01 Mbp의 속도로 동작하 였다.

A study of Time Management System in Data Base (데이터베이스에서의 시간 시스템에 관한 연구)

  • 최진탁
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.185-192
    • /
    • 1998
  • A new algorithm is proposed in this paper which efficiently performs join in the temporal database. The main idea is to sort the smaller relation and to partition the larger relation, and the proposed algorithm reduces the cost of sorting the larger relation. To show the usefulness of the algorithm, the cost is analyzed with respect to the number of accesses to secondary storage and compared with that of Sort-Merge algorithm. Through the comparisons, we present and verify the conditions under which the proposed algorithm always outperforms the Sort-Merge algorithm. The comparisons show that the proposed algorithm achieves 10∼30% gain under those conditions.

  • PDF

Least clipped absolute deviation for robust regression using skipped median

  • Hao Li;Seokho Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.135-147
    • /
    • 2023
  • Skipped median is more robust than median when outliers are not symmetrically distributed. In this work, we propose a novel algorithm to estimate the skipped median. The idea of skipped median and the new algorithm are extended to regression problem, which is called least clipped absolute deviation (LCAD). Since our proposed algorithm for nonconvex LCAD optimization makes use of convex least absolute deviation (LAD) procedure as a subroutine, regularizations developed for LAD can be directly applied, without modification, to LCAD as well. Numerical studies demonstrate that skipped median and LCAD are useful and outperform their counterparts, median and LAD, when outliers intervene asymmetrically. Some extensions of the idea for skipped median and LCAD are discussed.

Genetic Symmetric Key Generation for IDEA

  • Malhotra, Nandini;Nagpal, Geeta
    • Journal of Information Processing Systems
    • /
    • v.11 no.2
    • /
    • pp.239-247
    • /
    • 2015
  • Cryptography aims at transmitting secure data over an unsecure network in coded version so that only the intended recipient can analyze it. Communication through messages, emails, or various other modes requires high security so as to maintain the confidentiality of the content. This paper deals with IDEA's shortcoming of generating weak keys. If these keys are used for encryption and decryption may result in the easy prediction of ciphertext corresponding to the plaintext. For applying genetic approach, which is well-known optimization technique, to the weak keys, we obtained a definite solution to convert the weaker keys to stronger ones. The chances of generating a weak key in IDEA are very rare, but if it is produced, it could lead to a huge risk of attacks being made on the key, as well as on the information. Hence, measures have been taken to safeguard the key and to ensure the privacy of information.

GLOBAL CONVERGENCE PROPERTIES OF THE MODIFIED BFGS METHOD ASSOCIATING WITH GENERAL LINE SEARCH MODEL

  • Liu, Jian-Guo;Guo, Qiang
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.195-205
    • /
    • 2004
  • To the unconstrained programme of non-convex function, this article give a modified BFGS algorithm. The idea of the algorithm is to modify the approximate Hessian matrix for obtaining the descent direction and guaranteeing the efficacious of the quasi-Newton iteration pattern. We prove the global convergence properties of the algorithm associating with the general form of line search, and prove the quadratic convergence rate of the algorithm under some conditions.

Obstacle Avoidance Algorithm for Vehicle using Fuzzy Inferences

  • Kawaji, Shigeyasu;Matsunaga, Nobutomo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1246-1249
    • /
    • 1993
  • In this paper, we propose an algorithm of obstacle avoidance using fuzzy inferences. After the basic idea of the path generation algorithm using piecewise polynomials is described, the obstacle avoidance problem using fuzzy inferences is considered. Main concept of the avoidance algorithm is to modify intermittent point data using fuzzy inferences and to generate the collision free path based on the modified data. Finally, simulation result demonstrate the effectiveness of the proposed algorithm.

  • PDF

FAST UNIQUE DECODING OF PLANE AG CODES

  • Lee, Kwankyu
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.793-808
    • /
    • 2013
  • An interpolation-based unique decoding algorithm of Algebraic Geometry codes was recently introduced. The algorithm iteratively computes the sent message through a majority voting procedure using the Gr$\ddot{o}$bner bases of interpolation modules. We now combine the main idea of the Guruswami-Sudan list decoding with the algorithm, and thus obtain a hybrid unique decoding algorithm of plane AG codes, significantly improving the decoding speed.

A Study on Solution Methods of Two-stage Stochastic LP Problems

  • Lee, Sang-Jin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.1
    • /
    • pp.1-24
    • /
    • 1997
  • In this paper, we have proposed new solution methods to solve TSLP (two-stage stochastic linear programming) problems. One solution method is to combine the analytic center concept with Benders' decomposition strategy to solve TSLP problems. Another method is to apply an idea proposed by Geoffrion and Graves to modify the L-shaped algorithm and the analytic center algorithm. We have compared the numerical performance of the proposed algorithms to that of the existing algorithm, the L-shaped algorithm. To effectively compare those algorithms, we have had computational experiments for seven test problems.

  • PDF

새로운 모형기반 군집분석 알고리즘

  • Park, Jeong-Su;Hwang, Hyeon-Sik
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.97-100
    • /
    • 2005
  • A new model-based clustering algorithm is proposed. The idea starts from the assumption that observations are realizations of Gaussian processes and so are correlated. With a special covariance structure, the posterior probability that an observation belongs to each cluster is computed using the ECM algorithm. A preliminary result of small-scale simulation study is given to compare with the k-means clustering algorithms.

  • PDF

Adaptive Diagnosis Algorithm for Over-d Fault Diagnosis of Hypercube (하이퍼큐브의 Over-d 결함에 대한 적응적 진단 알고리즘)

  • 김선신;강성수;이충세
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.276-280
    • /
    • 2003
  • Somani and Peleg proposed t/k-diagnosable system to diagonse more faults than t(dimension) by allowing upper bounded few number of units to be diagnosed incorrectly. Kranakis and Pelc showed that their adaptive diagnosis algorithm was more efficient than that of any previous ones, assuming that the number of faults does not exceed the hypercube dimension. We propose an adaptive diagnosis algorithm using the idea of t/k-diagnosable system on the basis of that of Kranakis and Pelc's. When the number of faults exceeds t, we allow a fault(k=1, 2, 3) to be diagnosed incorrectly. Based on this idea, we find that the performance of the proposed algorithm is nearly as efficient as any previously known strategies and detect above about double faults.

  • PDF