Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1003956).
References
- Cardot H, Crambes C, and Sarda P (2005). Quantile regression when the covariates are functions, Journal of Nonparametric Statistics, 17, 841-856. https://doi.org/10.1080/10485250500303015
- Gao X and Huang J (2010). Asymptotic analysis of high-dimensional LAD regression with lasso, Statistica Sinica, 20, 1485-1506.
- Hampel FR, Ronchetti EM, Rousseeuw PJ, and Stahel WA (1986). Robust Statistics: The Approach Based on Influence Functions, Wiley, Toronto.
- Huber PJ (1984). Finite sample breakdown of M- and P-estimators. The Annals of Statistics, 12, 119-126. https://doi.org/10.1214/aos/1176346396
- Koenker R (2005). Quantile Regression, Cambridge University Press, Cambridge.
- Liu Y, Tao J, Zhang H, Xiu X, and Kong L (2018). Fused lasso penalized least absolute deviation estimator for high dimensional linear regression, Numerical Algebra, Control and Optimization, 8, 97-117. https://doi.org/10.3934/naco.2018006
- Maronna RA, Martin RD, Yohai VJ, and Salibian-Barrera M (2019). Robust Statistics: Theory and Methods (2nd ed), John Wiley & Sons, NewJersy.
- McCann L and Welsch RE (2007). Robust variable selection using least angle regression and elemental set sampling, Computational Statistics and Data Analysis, 52, 249-257. https://doi.org/10.1016/j.csda.2007.01.012
- She Y and Owen AB (2011). Outlier detection using nonconvex penalized regression, Journal of the American Statistical Association, 106, 626-639. https://doi.org/10.1198/jasa.2011.tm10390
- Wang Y and Zhu L (2017). Variable selection and parameter estimation via WLAD-SCAD with a diverging number of parameters, Journal of the Korean Statistical Society, 46, 390-403. https://doi.org/10.1016/j.jkss.2016.12.003
- Yohai VJ (1987). High breakdown-point and high efficiency estimates for regression, The Annals of Statistics, 15, 642-665. https://doi.org/10.1214/aos/1176350366