• Title/Summary/Keyword: ICV

Search Result 64, Processing Time 0.027 seconds

A Central Pressor Response to Endogenous Nitric Oxide Synthesis Inhibition in Anesthetized Rats

  • Moon, Sung-Ho;Yang, Min-Joon;Oh, Seung-Ho;Kim, Mi-Won;Yoo, Kwang-Jay;Lee, Jong-Eun;Jun, Jae-Yeoul;Yeum, Cheol-Ho;Yoon, Pyung-Jin
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.197-202
    • /
    • 1994
  • The present study was aimed to determine if endogenous L-arginine-nitric oxide (NO) pathway has central, rather than peripheral, mechanisms in blood pressure regulation. Arterial blood pressure and heart rate responses to acute inhibition of the t-arginine-NO pathway were examined in rats anesthetized with thiopental (50 mg/kg, IP). An intracerebroventricular (ICV) cannula was placed in the left lateral ventricle. The right femoral artery was cannulated to measure arterial blood pressure and the vein to serve as an infusion route. $N^G-nitro-L-arginine$ methyl ester (L-NAME) was infused either intracerebroventricularly or intravenously. ICV infusion $(1.25\;{\mu}L/min)$ of L-NAME $(20\;or\;100\;{\mu}g/kg)$ per minute for 60 min) increased the mean arterial pressure and heart rate. Plasma renin concentrations(PRC) were significantly lower in L-NAME-infused group than in the control. L-Arginine $(60\;{\mu}g/min,\;ICV)$ prevented the pressor response to ICV L-NAME. The pressor response was not affected by simultaneous intravenous infusion of saralasin, but was abolished by hexamethonium treatment. Intravenous infusion $(40\;{\mu}L/min,\;10{\sim}100\;{\mu}g/kg\;per\;minute\;for\;60\;min)$ also increased blood pressure, while it decreased heart rate. These results indicate that endogenous L-arginine-NO pathway has separate central and peripheral mechanisms in regulating the cardiovascular function. The central effect may not be mediated via activation of renin-angiotensin system, but via, at least in part, activation of the sympathetic outflow.

  • PDF

The Role of Corticotropin-Releasing Factor and Urocortin in Brain Mechanisms Controlling Feed Intake of Sheep

  • Sunagawa, K.;Weisiger, R.S.;McKinley, M.J.;Purcell, B.S.;Thomson, C.;Burns, P.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1529-1535
    • /
    • 2000
  • The aim of the present study was to determine whether brain corticotropin-releasing factor (CRF) and a new peptide, urocortin (UCN) have a direct action in brain mechanisms controlling feed, water and salt intake in sheep. We gave a continuous intracerebroventricular (ICV) infusion of the peptide at a small dose of $5{\mu}g/0.2ml/hr$ for 98.5 hrs from day 1 to day 5 in sheep not exposed to stress. Feed and water intake during ICV infusion of CRF or UCN decreased significantly compared to those during artificial cerebrospinal fluid (CSF) infusion. NaCl intake during infusion of CRF or UCN was the same as that during CSF infusion. Mean carotid arterial blood pressure (MAP) and heart rate during ICV infusion of CRF or UCN were not significantly different from that during CSF infusion. On the other hand, the plasma glucose concentration during ICV infusion of CRF or UCN tended to be higher than that during CSF infusion. These observations indicate that decreased feed intake induced by CRF and UCN infusion is not mediated by the activation of both the pituitary-adrenal axis and the sympathetic nervous system. The results suggested that brain CRF and UCN act directly in brain mechanisms controlling ingestive behavior to decrease feed and water intake, but do not alter salt intake in sheep.

Enhancement Characteristics of Gadolinium Contrast Agent in the Rat Inner Ear Perilymph through CSF microcirculation (뇌척수액 미세순환을 통한 래트 내이 외림프의 가돌리늄 조영제 증강 특성)

  • Kim, Min Jung;Lee, Sang-Yeol;Lee, Hui Joong;Lee, Taekwan;Chang, Yongmin
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.193-198
    • /
    • 2022
  • Contrast enhanced magnetic resonance imaging using gadolinium-based contrast agent (GBCA) is a very useful in vivo technique to visualize the inner ear pathology including endolymphatic hydrops. Although systemic intravenous (IV) administration can visualize the perilymph space, the visualization was possible by indirect passage of contrast agent through blood-perilymph barrier. All animal experimental procedures were performed under anesthesia with 5% isoflurane. Lipopolysaccharide (LPS) was instilled into the left tympanic cavity through the tympanic membrane using a sterile 27gauge needle to induce hydrops model. Tucker-Davis Technologies system was used to measure Auditory Brainstem Responses (ABRs). For intracerebroven-tricular (ICV) administration, 25 µmol of GADOVIST (Bayer, Berlin, Germany) was used and diluted GADOVIST injection was 10 µl. MR imaging was acquired with a 9.4 Tesla MRI scanner. Transmit-receive volume coil with 40 mm inner diameter and 75 mm out diameter was used. ICV administration well demonstrated the strong enhancement along the cerebrospinal fluid (CSF) microcirculation pathway including CSF fluid in the subarachnoid space and CSF space of the inner ear structures. On the other hand, IV administration showed no contrast enhancement along the CSF microcirculation pathway and showed weak enhancement in the inner ear structures. In case of rat hydrops model, ICV administration showed that the reduced contrast enhancement in the perilymph space of the hydrops induced inner ear compared to the contrast enhancement in the perilymph space of the normal inner ear. New systemic ICV administration method provide contrast enhancement of GBCA in the inner ear through CSF microcirculation pathway.

Assessment of Cerebral Circulatory Arrest via CT Angiography and CT Perfusion in Brain Death Confirmation

  • Asli Irmak Akdogan;Yeliz Pekcevik;Hilal Sahin;Ridvan Pekcevik
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.395-404
    • /
    • 2021
  • Objective: To compare the utility of computed tomography perfusion (CTP) and three different 4-point scoring systems in computed tomography angiography (CTA) in confirming brain death (BD) in patients with and without skull defects. Materials and Methods: Ninety-two patients clinically diagnosed as BD using CTA and/or CTP for confirmation were retrospectively reviewed. For the final analysis, 86 patients were included in this study. Images were re-evaluated by three radiologists according to the 4-point scoring systems that consider the vessel opacification on 1) the venous phase for both M4 segments of the middle cerebral arteries (MCAs-M4) and internal cerebral veins (ICVs) (A60-V60), 2) the arterial phase for the MCA-M4 and venous phase for the ICVs (A20-V60), 3) the venous phase for the ICVs and superior petrosal veins (ICV-SPV). The CTP images were independently reviewed. The presence of an open skull defect and stasis filling was noted. Results: Sensitivities of the ICV-SPV, A20-V60, A60-V60 scoring systems, and CTP in the diagnosis of BD were 89.5%, 82.6%, 67.4%, and 93.3%, respectively. The sensitivity of A20-V60 scoring was higher than that of A60-V60 in BD patients (p < 0.001). CTP was found to be the most sensitive method (86.5%) in patients with open skull defect (p = 0.019). Interobserver agreement was excellent in the diagnosis of BD, in assessing A20-V60, A60-V60, ICV-SPV, CTP, and good in stasis filling (κ: 0.84, 0.83, 0.83, 0.83, and 0.67, respectively). Conclusion: The sensitivity of CTA confirming brain death differs between various proposed 4-point scoring systems. Although the ICV-SPV is the most sensitive, evaluation of the SPV is challenging. Adding CTP to the routine BD CTA protocol, especially in cases with open skull defect, could increase sensitivity as a useful adjunct.

Regional Gray Matter Volume Reduction Associated with Major Depressive Disorder: A Voxel-Based Morphometry

  • Tae, Woo-Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.1
    • /
    • pp.10-18
    • /
    • 2015
  • Background and Purpose: The association between the low emotional regulation and the brain structural change of major depressive disorder (MDD) has been proposed, but the voxel-based morphometry (VBM) studies on female MDD are rare. The purpose of the present study was to show the regional volume changes of gray matter (GM) in female patients with MDD by optimized VBM. Methods: To control subjects homogeneity, twenty female MDD patients and age, sex matched 21 normal controls were included for the VBM analysis. To identify the change of regional gray matter volume (GMV), the optimized VBM was performed with T1 MRIs. The amounts of gray/white matter and intracranial cavity volumes (ICV) were measured. The analysis of covariance (ANCOVA) and partial correlation analyses covariate with age and ICV were applied for VBM. Results: The age and ICV distributions were similar between the two groups. In the ANCOVA, the total GMV of MDD was smaller than that of normal controls. In the VBM, regional GMV was relatively decreased in the limbic system (amygdalae, ambient gyri, hippocampi heads, subiculum, posterior parahippocampal gyri, pulvinar nuclei, dorsal posterior cingulate gyri, and left pregenual cingulate gyrus). The lingual gyri, short insular gyri, right fusiform gyrus, and right inferior frontal gyrus were also showed decreased regional GMV. Conclusion: The results of this study indicate that the female MDD is mainly associated with the structural deficits of the limbic system and limbic system related cortices, which were known to the center of emotions.

Effects of Intracerebroventricular Captopril on the Central Pressor Response to Bradykinin in Normotensive and Hypertensive Rats

  • Yeum, Cheol-Ho;Yoon, Pyung-Jin
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.191-196
    • /
    • 1994
  • Captopril, an inhibitor of angiotensin converting enzyme, is also known to inhibit the degradation of bradykinin. We examined the effects of intracerebroventricular (ICV) captopril on the central pressor response to bradykinin in normotensive, 2-kidney, 1 clip Goldblatt (GHR) and deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Captopril (1 mg) and bradykinin (5 nmol) were administered into the right lateral cerebral ventricle, and blood pressure and heart rate were continuously monitored throughout the experiment. ICV captopril alone did not affect the blood pressure within 10 minutes but it significantly augmented the central pressor response to bradykinin in GHR. On the contrary, captopril was without effect on the pressor response to bradykinin in normotensive and DOCA-salt rats. These findings indicate that endogenous kinins are not critical in regulating arterial pressure in normotensive and DOCA hypertensive rats. However, in GHR, an enhanced activity of the brain kallikrein-kinin system in maintaining the high blood pressure is suggested.

  • PDF

Effects of intracerebroventricular injection of corticotrophin releasing factor on the gene expression of ghrelin and corticotrophin releasing factor receptors in broiler chickens

  • Cai, Yuanli;Song, Zhigang
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1904-1910
    • /
    • 2022
  • Objective: This study aimed to investigate the effects of corticotropin-releasing factor (CRF) on the feed intake of broiler chickens and explore its influencing mechanism. Methods: The study included two trials. In trial 1, 32 male broiler chickens (Arbor Acres, Gallus gallus domesticus) were given ventricle buried tubes, and they were allowed to recover for 3 days. At 8:00 AM, intracerebroventricular (ICV) injection with CRF or normal saline was performed in 10-day-old broiler chickens, which were divided into the 5, 10, and 20 ㎍ and control (normal saline) groups according to the dose of CRF injection. In trial 2, chickens were divided into the 10 ㎍ and control group (physiological saline) to repeat trial 1. Results: Results of trial 1 showed that the cumulative amount of feed intake in the 10 or 20 ㎍ groups was considerably lower than that of the control group after ICV injection with CRF. The lowest amount of feed intake was obtained with the addition of 10 ㎍ of CRF. In trial 2, the expression of ghrelin in the hypothalamus injected with 10 ㎍ of CRF increased significantly, but the expression of ghrelin in various sections of the small intestine considerably decreased. The expression of CRF receptor subtypes 1 (CRFR1) in the hypothalamus and some parts of the small intestine remarkably increased, and the expression of CRF receptor subtypes 2 (CRFR2) increased only in the duodenum, whereas the expression of growth hormone secretagogue receptor (GHSR-1α) in the jejunum and ileum increased considerably after ICV injection of 10 ㎍ of CRF. Conclusion: The CRF at 10 ㎍ increased ghrelin expression in the hypothalamus and CRFR1 expression in the small intestine, and this phenomenon was related to the suppressed feed intake of broiler chickens.

Pressor Action of Intracerebroventricular Nicotine and Muscarine in the Rabbit (가토 측뇌실내 Nicotine 및 Muscarine의 혈압상승작용에 관하여)

  • Lee, Choong-Kyoung
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.21-31
    • /
    • 1991
  • When administered intracerebroventricularly (icv), cholinergic nicotinic agents, nicotine and DMPP, as well as cholinergic muscarinic agents, muscarine and bethanechol, produced pressor responses in urethane-anesthetized vagotomized rabbits. The response patterns to nicotine and to DMPP were similar, while the bethanechol response resembled the muscarine pattern. The pressor response to nicotine and DMPP was markedly inhibited by icv mecamylamine but not by icv pirenzepine, whereas the response to muscarine and bethanechol was inhibited by icv pirenzepine but not by icv mecamylamine, suggesting that both nicotinic and muscarinic receptors in the brain are involved in the action. Intravenous pretreatments of animals with regitine, reserpine, enalapril, saralasin, both regitine and enalapril, both regitine and saralasin, SK&F-100273 did not prevent the pressor response to nicotine and muscarine. Iv pretreatments with both regitine and SK&F-100273 inhibited the nicotine response without affecting the muscarine response, whereas pretreatments with three agents, regitine, enalapril and SK&F-100273, inhibited the muscarine response. The nicotine-induced elevated blood pressure as well as the muscarine-induced were lowered by regitine but not by enalapril or by SK&F-100273. Enalapril was without effect on the nicotine hypertension in rabbits treated with regitine or both regitine and SK&F-100273, whereas SK&F-100273 lowered the nicotine hypertension in regitine-treated animals. Enalapril did not enhance the lowering effect of SK&F-100273 in regitine-treated ones, nor did it cause a fall of the muscarine hypertension induced in regitine-treated rabbits, but it did lower the blood pressure in animals treated with both regitine and SK&F-100273. Likewise, SK&F-100273 did not cause a fall of the muscarine hypertension induced in regitine-treated rabbits, but it did lower the blood pressure in animals treated with both regitine and enalapril. These data suggest that the nicotine-induced hypertensive state is related to at least two systems in the periphery-sympathetic and vasopressin, whereas in the muscarine-induced hypertensive state three systems in the periphery are involved, i.e., the sympathetic, vasopressin and angiotensin system. The hypotensive effect of regitine on basal arterial blood pressure levels of rabbits was not influenced by pretreatment with either of enalapril or SK&F-100273, but significantly potentiated by treating with both enalapril and SK&F-100273, suggesting participation of the sympathetic and the renin-angiotensin system as well as the vasopressin system in maintenance of arterial blood pressure.

  • PDF

Studies on Involvement of Central GABAergic Mechanism and Central ${\alpha}_{2}-Adrenoceptors$ in Pressor Responses to Raised Intracranial Pressure (두개내압상승에 의한 혈압상승작용과 중추 GABA계 및 중추 ${\alpha}_{2}$-아드레날린 수용체와의 관계)

  • Kim, Yung-Sik
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.23-32
    • /
    • 1993
  • Recent studies have shown that a GABAergic mechanism in the brain modulates arterial blood pressure (BP) through alterations of sympathetic activity in the brain. The purpose of the present study was to determine if this modulation is involved in the pressor response to raised intracranial pressure (ICP). The pressor response to raised ICP was abolished by pretreatment of anesthetized rabbits with intracerebroventricular (icv) muscimol (a GABA agonist) as well as with icv clonidine $(an\;{\alpha}_2-agonist)$. Raising ICP in the hypertensive state after icv yohimbine $(an\;{\alpha}_2-antagonist)$ did not cause an additional increase in the BP, whereas raising ICP in the hypertensive state following icv bicuculline (a GABA antagonist) produced a further increase. Bicuculline produced an increase of the BP which had been lowered by muscimol or by clonidine, whereas it failed to increase the hypertensive state induced by either previous yohimbine or raised ICP. Yohimbine reversed the BP which had been made low by clonidine but was incapable of raising the hypotensive state after muscimol. Yohimbine failed to increase the heightened BP due to raised ICP, whereas bicuculline-induced pressor state was further elevated by yohimbine. Muscimol, besides the bicuculline-antagonizing property, inhibited the pressor response to yohimbine, suggesting participation of a GABAergic mechanism in the pressor action of yohimbine. From these results it was inferred that there were three ways in which BP could be increased via raised ICP: inactivation of the inhibitory sympathetic activity through (1) ${\alpha}_{2}-adrenoceptors$, (2) bicuculline-sensitive GABA receptors, (3) yohimbine-sensitive, clonidine-acting GABAergic sites.

  • PDF

Dynamic Performance Simulation of the Propulsion System for the CRW-Type UAV Using SIMULINK (SIMULINK를 이용한 CRW-type UAV 추진시스템의 동적 성능 모사에 관한 연구)

  • Kong Chang-Duk;Park Jong-Ha
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.76-83
    • /
    • 2004
  • A Propulsion System of the CRW(Canard Rotor Wing) type UAV(Unmanned Aerial Vehicle) was composed of the turbojet engine to generate the propulsive exhaust gas, and the duct system including main and rotary ducts, the nozzle subsystem including main and tip jet nozzle for three flight modes such as lift/landing mode, low speed transition flight mode and high speed forward flight mode. Transient simulation performance utilized the ICV (Inter-component volume) method and simulated using the SIMULINK. Transient performance analysis was performed on 3 cases. Fuel flow schedules to accelerate from Idle to maximum rotational speed were divided into the step increase of the most severe case and ramp increase cases to avoid the overshoot of turbine inlet temperature, and variations of thrust and the turbine inlet temperature were investigated in some transient analysis cases.