• Title/Summary/Keyword: ICT learning

Search Result 684, Processing Time 0.029 seconds

Analysis of Cause on Difference of ICT Literacy Level according to Region Scale in Elementary School (ICT 활용 습관에 따른 초등학생의 지역규모별 ICT 리터러시 수준 차이에 대한 원인 분석)

  • Ahn, Sunghun
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.5
    • /
    • pp.595-605
    • /
    • 2017
  • In this paper, I analyzed the cause on difference of ICT literacy level according to region scale in elementary school. According to precedent research, ICT literacy score of elementary student in 2016 were higher in order of big city, small city and rural area. To find the cause of difference by region scale, I compared ICT literacy score and ICT use habit. As a result, The cause for this is that students in large areas have more chances to use computers at home, learn more with computers, and have more information (computer) education than students in small areas appear. Therefore, Based on the results of this study, I proposed methods to reduce the regional ICT literacy score difference. The methods are to provide computers for low-income students, to guide learning methods using computers at home, and to provide more computer education opportunities.

Use of learning method to generate of motion pattern for robot (학습기법을 이용한 로봇의 모션패턴 생성 연구)

  • Kim, Dong-won
    • Journal of Platform Technology
    • /
    • v.6 no.3
    • /
    • pp.23-30
    • /
    • 2018
  • A motion pattern generation is a process of calculating a certain stable motion trajectory for stably operating a certain motion. A motion control is to make a posture of a robot stable by eliminating occurring disturbances while a robot is in operation using a pre-generated motion pattern. In this paper, a general method of motion pattern generation for a biped walking robot using universal approximator, learning neural networks, is proposed. Existing techniques are numerical methods using recursive computation and approximating methods which generate an approximation of a motion pattern by simplifying a robot's upper body structure. In near future other approaches for the motion pattern generations will be applied and compared as to be done.

Recognition of Virtual Written Characters Based on Convolutional Neural Network

  • Leem, Seungmin;Kim, Sungyoung
    • Journal of Platform Technology
    • /
    • v.6 no.1
    • /
    • pp.3-8
    • /
    • 2018
  • This paper proposes a technique for recognizing online handwritten cursive data obtained by tracing a motion trajectory while a user is in the 3D space based on a convolution neural network (CNN) algorithm. There is a difficulty in recognizing the virtual character input by the user in the 3D space because it includes both the character stroke and the movement stroke. In this paper, we divide syllable into consonant and vowel units by using labeling technique in addition to the result of localizing letter stroke and movement stroke in the previous study. The coordinate information of the separated consonants and vowels are converted into image data, and Korean handwriting recognition was performed using a convolutional neural network. After learning the neural network using 1,680 syllables written by five hand writers, the accuracy is calculated by using the new hand writers who did not participate in the writing of training data. The accuracy of phoneme-based recognition is 98.9% based on convolutional neural network. The proposed method has the advantage of drastically reducing learning data compared to syllable-based learning.

An Adaptive Approach to Learning the Preferences of Users in a Social Network Using Weak Estimators

  • Oommen, B. John;Yazidi, Anis;Granmo, Ole-Christoffer
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.191-212
    • /
    • 2012
  • Since a social network by definition is so diverse, the problem of estimating the preferences of its users is becoming increasingly essential for personalized applications, which range from service recommender systems to the targeted advertising of services. However, unlike traditional estimation problems where the underlying target distribution is stationary; estimating a user's interests typically involves non-stationary distributions. The consequent time varying nature of the distribution to be tracked imposes stringent constraints on the "unlearning" capabilities of the estimator used. Therefore, resorting to strong estimators that converge with a probability of 1 is inefficient since they rely on the assumption that the distribution of the user's preferences is stationary. In this vein, we propose to use a family of stochastic-learning based Weak estimators for learning and tracking a user's time varying interests. Experimental results demonstrate that our proposed paradigm outperforms some of the traditional legacy approaches that represent the state-of-the-art technology.

Predicting Crop Production for Agricultural Consultation Service

  • Lee, Soong-Hee;Bae, Jae-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.8-13
    • /
    • 2019
  • Smart Farming has been regarded as an important application in information and communications technology (ICT) fields. Selecting crops for cultivation at the pre-production stage is critical for agricultural producers' final profits because over-production and under-production may result in uncountable losses, and it is necessary to predict crop production to prevent these losses. The ITU-T Recommendation for Smart Farming (Y.4450/Y.2238) defines plan/production consultation service at the pre-production stage; this type of service must trace crop production in a predictive way. Several research papers present that machine learning technology can be applied to predict crop production after related data are learned, but these technologies have little to do with standardized ICT services. This paper clarifies the relationship between agricultural consultation services and predicting crop production. A prediction scheme is proposed, and the results confirm the usability and superiority of machine learning for predicting crop production.

A study on real-time internet comment system through sentiment analysis and deep learning application

  • Hae-Jong Joo;Ho-Bin Song
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.3-14
    • /
    • 2023
  • This paper proposes a big data sentiment analysis method and deep learning implementation method to provide a webtoon comment analysis web page for convenient comment confirmation and feedback of webtoon writers for the development of the cartoon industry in the video animation field. In order to solve the difficulty of automatic analysis due to the nature of Internet comments and provide various sentiment analysis information, LSTM(Long Short-Term Memory) algorithm, ranking algorithm, and word2vec algorithm are applied in parallel, and actual popular works are used to verify the validity. If the analysis method of this paper is used, it is easy to expand to other domestic and overseas platforms, and it is expected that it can be used in various video animation content fields, not limited to the webtoon field

  • PDF

A Study on Development of Quality Standards of Educational Smart Contents

  • Jun, Woochun;Hong, Suk-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.2152-2170
    • /
    • 2014
  • With advances in smart and ICT(information and communication technology) technologies, our life style has been changing dramatically. Now everybody can enjoy the benefits of such technologies in every aspect of his/her daily life. Currently more and more people are trying to have smart devices such as smart phones and tablet PCs so that smart devices become the bare necessities. New smart technologies have created a new concept called smart learning in education area. As educational smart contents become popular, we need quality standards for the contents. Those standards are essential for evaluating the smart contents and suggesting guidance for future smart contents production. Although there are some standards for the existing e-learning environments, to our best knowledge, there are no standards for educational smart contents in the literature. The purpose of this paper is to develop quality standards for educational smart contents. The proposed quality standards are based on the existing quality standards in e-learning environments and include some characteristics of smart learning. For development of quality standards, wide experts group from academy and industry are selected and surveyed. Their responses are analyzed based on thorough statistical analysis so that final quality standards for educational smart contents are developed.

An Analysis of Operating System and Contents Connection of NRICH Web Site (영국 NRICH 웹사이트 운영과 콘텐츠 연계 방식 고찰)

  • Park, Ji hwan;Song, Myeong-Seon;Hong, Gap ju
    • Education of Primary School Mathematics
    • /
    • v.18 no.3
    • /
    • pp.217-234
    • /
    • 2015
  • Computer technology and internet environment have been adapted to teaching and learning in Korean educational context. However, there are several problematic areas in operating web site for teaching and learning mathematics. This study aims to investigate the operating system, such as designing web site, contents information, and contents connection of NRICH web site that has been operated as a part of 'Millennium Mathematics Project' of Cambridge University since 1997. Based on these categories, this study also gives the implications for how to develop theme-centered contents, accumulation of continuous and long-term data, induction of user's participation, and various cooperation project.

Actuator Fault Detection and Adaptive Fault-Tolerant Control Algorithms Using Performance Index and Human-Like Learning for Longitudinal Autonomous Driving (종방향 자율주행을 위한 성능 지수 및 인간 모사 학습을 이용하는 구동기 고장 탐지 및 적응형 고장 허용 제어 알고리즘)

  • Oh, Sechan;Lee, Jongmin;Oh, Kwangseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.129-143
    • /
    • 2021
  • This paper proposes actuator fault detection and adaptive fault-tolerant control algorithms using performance index and human-like learning for longitudinal autonomous vehicles. Conventional longitudinal controller for autonomous driving consists of supervisory, upper level and lower level controllers. In this paper, feedback control law and PID control algorithm have been used for upper level and lower level controllers, respectively. For actuator fault-tolerant control, adaptive rule has been designed using the gradient descent method with estimated coefficients. In order to adjust the control parameter used for determination of adaptation gain, human-like learning algorithm has been designed based on perceptron learning method using control errors and control parameter. It is designed that the learning algorithm determines current control parameter by saving it in memory and updating based on the cost function-based gradient descent method. Based on the updated control parameter, the longitudinal acceleration has been computed adaptively using feedback law for actuator fault-tolerant control. The finite window-based performance index has been designed for detection and evaluation of actuator performance degradation using control error.

Classification of Fall Direction Before Impact Using Machine Learning Based on IMU Raw Signals (IMU 원신호 기반의 기계학습을 통한 충격전 낙상방향 분류)

  • Lee, Hyeon Bin;Lee, Chang June;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.96-101
    • /
    • 2022
  • As the elderly population gradually increases, the risk of fatal fall accidents among the elderly is increasing. One way to cope with a fall accident is to determine the fall direction before impact using a wearable inertial measurement unit (IMU). In this context, a previous study proposed a method of classifying fall directions using a support vector machine with sensor velocity, acceleration, and tilt angle as input parameters. However, in this method, the IMU signals are processed through several processes, including a Kalman filter and the integration of acceleration, which involves a large amount of computation and error factors. Therefore, this paper proposes a machine learning-based method that classifies the fall direction before impact using IMU raw signals rather than processed data. In this study, we investigated the effects of the following two factors on the classification performance: (1) the usage of processed/raw signals and (2) the selection of machine learning techniques. First, as a result of comparing the processed/raw signals, the difference in sensitivities between the two methods was within 5%, indicating an equivalent level of classification performance. Second, as a result of comparing six machine learning techniques, K-nearest neighbor and naive Bayes exhibited excellent performance with a sensitivity of 86.0% and 84.1%, respectively.