• 제목/요약/키워드: ICT 이용 산업

검색결과 282건 처리시간 0.019초

소규모 사업체의 세무회계서비스 추천 의향 조사 (A Survey of Recommendation Intent for Small Business Tax Accounting Services)

  • 이재인;김성희
    • 감성과학
    • /
    • 제25권2호
    • /
    • pp.71-78
    • /
    • 2022
  • 본 연구는 최근 기업체에서 많이 사용하고 있는 세무회계서비스에 대한 추천 의향을 조사하여 그 결과를 분석하는 것이다. 특히 비용이나 시간적 측면에서 상대적으로 어려움을 겪는 100인 이하의 소규모 기업체를 대상으로 하여 해당 기업체들에 더 나은 서비스가 되기 위한 방향성을 찾는 것을 목적으로 한다. 이를 위하여 100명의 기업체 관계자 대상으로, 회사 근무자 규모, 직급, 사업자 유형 등 사업체 기본 정보는 물론 이용 중인 세무회계서비스 형태, 서비스에 대한 추천 점수, 점수에 대한 이유, 기타 세무회계서비스 관련 의견 등을 조사한다. 특히 추천 점수는 단순 만족도를 묻는 일반적인 고객의 만족도 조사보다 고객의 의견을 파악하는데 더 효과적이라고 알려진 NPS(Net Promoter Score) 방식을 사용함으로써 더 효과적인 결과를 얻고자 한다. 조사 결과 추천도에 대한 NPS 점수는 -33점으로 나왔으며 이는 일반적인 NPS 점수 평가 기준을 참고할 때 낮은 편에 해당하여 세무회계서비스에 대한 개선이 필요하다는 것을 알 수 있었다. 더 구체적으로는 비추천 점수를 준 응답자들의 의견에서 불편하지도 편하지도 않고 그냥 무난해서 도움이 되는지 잘 모르겠다, 차별성이 없으며 대안도 특별히 없다 등의 의견이 있었음을 볼 때 비추천 점수를 높이기 위해서는 차별적인 서비스가 필요하다는 결론을 얻을 수 있었다. 본 조사는 100인 이하의 기업체 관계자를 대상으로 추천도 중심으로 조사한 것으로 이후에는 기업체 규모와 조사 항목을 더 다양하게 한 조사 진행이 추가로 필요하다.

Inception V3를 이용한 흉부촬영 X선 영상의 폐렴 진단 분류 (Diagnostic Classification of Chest X-ray Pneumonia using Inception V3 Modeling)

  • 김지율;예수영
    • 한국방사선학회논문지
    • /
    • 제14권6호
    • /
    • pp.773-780
    • /
    • 2020
  • 4차 산업의 발전으로 의학·보건·바이오 등 여러 과학기술 분야에서는 질병을 예방하고 질병에 대한 피해를 줄이기 위한 연구가 이루어지고 있으며, 최근에는 ICT 기술의 발전과 더불어 인공지능 기술이 급부상하고 그 효용성이 입증되면서 영상의학 검사의 영상 분석에 인공지능 기술이 도입되어 연구되고 있다. 본 논문에서는 흉부 X선 영상을 이용하여 폐렴의 분류와 검출에 대한 딥러닝 모델을 직접 적용해보고 실제로 Inception 계열의 딥러닝 모델이 폐렴 검출에 있어 유용한 모델인지 평가하고자 한다. 실험재료는 캐글(Kaggle)에서 무료로 제공 및 공유하는 흉부 X선 영상 데이터 세트를 사용하였으며 전체 3,470개의 흉부 X선 영상 데이터 중 학습 데이터 세트 1,870개, 검증 데이터 세트 1,100개, 테스트 데이터 세트 500개로 분류하였다. 실험결과 Inception V3 딥러닝 모델의 Metric 평가에 대한 결과값은 정확도는 94.80%, 정밀도는 97.24%, 재현율은 94.00%, F1 스코어는 95.59의 결과값을 나타내었다. 그리고 흉부 X선 영상의 페렴 검출 및 분류에 대하여 Inception V3 딥러닝 모델링에 대한 최종 에포크의 정확도는 학습 모델링의 경우 94.91%, 검증 모델링은 89.68%의 정확도를 나타내었다. 손실함수 값의 평가는 학습 모델링은 1.127%, 검증 모델링은 4.603%의 손실함수 값을 나타내었다. 이러한 결과로 Inception V3 딥러닝 모델은 흉부영상 데이터의 특징 추출 및 분류에 있어 매우 우수한 딥러닝 모델이며 학습상태 또한 매우 우수하다고 평가하였다. 테스트 모델링에 대한 매트릭스 정확도 평가 결과 정상 흉부 X선 영상 데이터의 경우 96%, 폐렴 흉부 X선 영상데이터의 경우 97%의 정확도가 입증되었다. Inception 계열의 딥러닝 모델의 경우 흉부 질환의 분류에 있어 유용한 딥러닝 모델이 될 것이라고 판단되며 인력의 보조적인 역할 또한 수행할 수 있을 것이라고 기대되어 부족한 의료인력 문제에도 해결점이 될 것이라고 사료된다. 향후 딥러닝을 이용한 폐렴의 진단에 대한 유사 연구 시 본 연구는 유사 연구의 기초자료로 제시될 것이라고 기대된다.