• 제목/요약/키워드: ICRP Reference Voxel Phantom

검색결과 9건 처리시간 0.019초

한국인 기준여성 체적소형 모의체 개발 (Development of the Reference Korean Female Voxel Phantom)

  • 함보경;조건우;염연수;정종휘;김찬형;한민철
    • Journal of Radiation Protection and Research
    • /
    • 제37권1호
    • /
    • pp.41-49
    • /
    • 2012
  • 한국인 기준남성 체적소형 모의체 HDRK-Man은 서양인과는 구별되는 한국인에 대한 내 외부피폭 관련 방사선방호량을 계산하기 위하여 개발되었다. 하지만 유효선량을 그 정의에 맞게 계산하기 위해서는 반드시 남녀 한쌍의 인체 전산모의체가 필요하다. 이에 본 연구는 HDRK-Man과 한 쌍을 이루는 한국인 기준여성 체적소형 모의체 HDRK-Woman을 개발하였다. HDRK-Woman의 개발을 위하여 한국인 여성사체로부터 획득된 고해상도 연속절단면 컬러해부영상을 사용하여 제작된 체적소형 모의체의 키, 몸무게 및 장기무게를 한국인 기준자료에 맞게 조정하였다. 전반적인 조정 절차는 ICRP의 체적소형 기준모의체 개발 시 사용된 방법에 따라 키 조정, 뼈 무게 조정, 장기무게 조정, 몸무게 조정의 순으로 진행하였다. 특별히 기존에 사용되던 장기무게 조정 방법의 반복된 절차를 간소화하고 단점을 보완하기 위하여 장기무게 조정 프로그램을 자체적으로 개발하여 사용하였다. 최종 완성된 HDRK-Woman의 체적소 해상도는 x, y, z축 방향 순으로 $2.0351{\times}2.0351{\times}2.0747\;mm^3$이며, 체적소 행렬의 크기는 $261{\times}109{\times}825$이다. 또한 유효선량 계산 시 필요한 장기들을 포함한 총 39개의 장기 및 조직이 표현되어 있다. 본 연구는 HDRK-Woman을 MCNPX 몬테칼로 코드에 입력하여 외부에서 입사하는 광자빔에 대한 장기선량을 계산하였으며, HDRK-Man의 장기선량과 합산하여 한국인에 대한 유효선량 환산계수를 계산하고 ICRP 기준남녀 체적소형 모의체의 유효선량과 비교하였다. 고해상도 컬러해부영상을 기반으로 제작된 기준한국인 성인여성 체적소형 모의체 HDRK-Woman은 장기 및 조직이 정밀하게 표현되어 있으며, 일부 조정이 불가능한 장기를 제외한 대부분의 장기 및 조직들이 한국인 기준자료에 정확하게 일치하도록 조정되었다. 따라서 기준한국인 성인남성 체적소형 모의체 HDRK-Man과 함께 한국인에 대한 장기선량 및 유효선량을 정확하게 평가하는데 활용될 수 있을 것으로 기대된다.

Dose coefficients of mesh-type ICRP reference computational phantoms for external exposures of neutrons, protons, and helium ions

  • Yeom, Yeon Soo;Choi, Chansoo;Han, Haegin;Shin, Bangho;Nguyen, Thang Tat;Han, Min Cheol;Kim, Chan Hyeong;Lee, Choonsik
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1545-1556
    • /
    • 2020
  • Recently, the International Commission on Radiological Protection (ICRP) has developed the Mesh-type Reference Computational Phantoms (MRCPs) for adult male and female to overcome the limitations of the current Voxel-type Reference Computational Phantoms (VRCPs) described in ICRP Publication 110 due to the limited voxel resolutions and the nature of voxel geometry. In our previous study, the MRCPs were used to calculate the dose coefficients (DCs) for idealized external exposures of photons and electrons. The present study is an extension of the previous study to include three additional particles (i.e., neutrons, protons, and helium ions) into the DC library by conducting Monte Carlo radiation transport simulations with the Geant4 code. The calculated MRCP DCs were compared with the reference DCs of ICRP Publication 116 which are based on the VRCPs, to appreciate the impact of the new reference phantoms on the DC values. We found that the MRCP DCs of organ/tissue doses and effective doses were generally similar to the ICRP-116 DCs for neutrons, whereas there were significant DC differences up to several orders of magnitude for protons and helium ions due mainly to the improved representation of the detailed anatomical structures in the MRCPs over the VRCPs.

Organ Dose Conversion Coefficients Calculated for Korean Pediatric and Adult Voxel Phantoms Exposed to External Photon Fields

  • Lee, Choonsik;Yeom, Yeon Soo;Griffin, Keith;Lee, Choonik;Lee, Ae-Kyoung;Choi, Hyung-do
    • Journal of Radiation Protection and Research
    • /
    • 제45권2호
    • /
    • pp.69-75
    • /
    • 2020
  • Background: Dose conversion coefficients (DCCs) have been commonly used to estimate radiation-dose absorption by human organs based on physical measurements of fluence or kerma. The International Commission on Radiological Protection (ICRP) has reported a library of DCCs, but few studies have been conducted on their applicability to non-Caucasian populations. In the present study, we collected a total of 8 Korean pediatric and adult voxel phantoms to calculate the organ DCCs for idealized external photon-irradiation geometries. Materials and Methods: We adopted one pediatric female phantom (ETRI Child), two adult female phantoms (KORWOMAN and HDRK Female), and five adult male phantoms (KORMAN, ETRI Man, KTMAN1, KTMAN2, and HDRK Man). A general-purpose Monte Carlo radiation transport code, MCNPX2.7 (Monte Carlo N-Particle Transport extended version 2.7), was employed to calculate the DCCs for 13 major radiosensitive organs in six irradiation geometries (anteroposterior, posteroanterior, right lateral, left lateral, rotational, and isotropic) and 33 photon energy bins (0.01-20 MeV). Results and Discussion: The DCCs for major radiosensitive organs (e.g., lungs and colon) in anteroposterior geometry agreed reasonably well across the 8 Korean phantoms, whereas those for deep-seated organs (e.g., gonads) varied significantly. The DCCs of the child phantom were greater than those of the adult phantoms. A comparison with the ICRP Publication 116 data showed reasonable agreements with the Korean phantom-based data. The variations in organ DCCs were well explained using the distribution of organ depths from the phantom surface. Conclusion: A library of dose conversion coefficients for major radiosensitive organs in a series of pediatric and adult Korean voxel phantoms was established and compared with the reference data from the ICRP. This comparison showed that our Korean phantom-based data agrees reasonably with the ICRP reference data.

Implications of using a 50-μm-thick skin target layer in skin dose coefficient calculation for photons, protons, and helium ions

  • Yeom, Yeon Soo;Nguyen, Thang Tat;Choi, Chansoo;Han, Min Cheol;Lee, Hanjin;Han, Haegin;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1495-1504
    • /
    • 2017
  • In a previous study, a set of polygon-mesh (PM)-based skin models including a $50-{\mu}m-thick$ radiosensitive target layer were constructed and used to calculate skin dose coefficients (DCs) for idealized external beams of electrons. The results showed that the calculated skin DCs were significantly different from the International Commission on Radiological Protection (ICRP) Publication 116 skin DCs calculated using voxel-type ICRP reference phantoms that do not include the thin target layer. The difference was as large as 7,700 times for electron energies less than 1 MeV, which raises a significant issue that should be addressed subsequently. In the present study, therefore, as an extension of the initial, previous study, skin DCs for three other particles (photons, protons, and helium ions) were calculated by using the PM-based skin models and the calculated values were compared with the ICRP-116 skin DCs. The analysis of our results showed that for the photon exposures, the calculated values were generally in good agreement with the ICRP-116 values. For the charged particles, by contrast, there was a significant difference between the PM-model-calculated skin DCs and the ICRP-116 values. Specifically, the ICRP-116 skin DCs were smaller than those calculated by the PM models-which is to say that they were under-estimated-by up to ~16 times for both protons and helium ions. These differences in skin dose also significantly affected the calculation of the effective dose (E) values, which is reasonable, considering that the skin dose is the major factor determining effective dose calculation for charged particles. The results of the current study generally show that the ICRP-116 DCs for skin dose and effective dose are not reliable for charged particles.

고해상도 연속절단면 컬러해부영상을 이용한 한국인 성인여성 복셀팬텀 VKH-Woman 개발 (Development of a Korean Adult Female Voxel Phantom, VKH-Woman, Based on Serially Sectioned Color Slice Images)

  • 정종휘;염연수;한민철;김찬형;함보경;황성배;김성훈;이동명
    • 한국의학물리학회지:의학물리
    • /
    • 제23권3호
    • /
    • pp.199-208
    • /
    • 2012
  • 전신에 대해 방사선에 민감한 주요장기가 미리 정의된 인체 전산팬텀(compuational human phantom)은 의료분야에서 방사선 치료에 의한 이차암 위험도 평가 및 진단방사선에 의한 유효선량 평가 등에 유용하게 활용될 수 있다. 본 연구에서는 한국인 여성사체에 대한 고해상도 연속절단면 컬러해부영상을 이용하여 장기 및 조직을 전신에 걸쳐 약 2 mm 간격으로 정밀하게 분할하였고, 이를 이용하여 몬테칼로 전산모사에 사용될 수 있는 VHK-Woman 복셀팬텀을 개발하였다. VKH-Woman 복셀팬텀은 키 160 cm, 몸무게 52.72 kg으로 한국인 여성의 표준체형에 가까우며, 유효선량을 계산할 수 있도록 ICRP 103에 제시된 27개 장기 및 기타 관심장기 12개를 포함한다. VKH-Woman의 복셀 해상도는 $1.976{\times}1.976{\times}2.0619mm^3$이며 복셀행렬의 크기는 $261{\times}109{\times}825$이고, 몬테칼로 코드에 입력하여 사용될 수 있도록 이진파일과 ASCII 파일 형식으로 데이터화되었다.

New skeletal dose coefficients of the ICRP-110 reference phantoms for idealized external fields to photons and neutrons using dose response functions (DRFs)

  • Bangho Shin;Yumi Lee;Ji Won Choi;Soo Min Lee;Hyun Joon Choi;Yeon Soo Yeom
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.1949-1958
    • /
    • 2023
  • The International Commission on Radiological Protection (ICRP) Publication 116 was released to provide a comprehensive dataset of the dose coefficients (DCs) for external exposures produced with the adult reference voxel phantoms of ICRP Publication 110. Although an advanced skeletal dosimetry method for photons and neutrons using fluence-to-dose response functions (DRFs) was introduced in ICRP Publication 116, the ICRP-116 skeletal DCs were calculated by using the simple method conventionally used (i.e., doses to red bone marrow and endosteum approximated by doses to spongiosa and/or medullary cavities). In the present study, the photon and neutron DRFs were used to produce skeletal DCs of the ICRP-110 reference phantoms, which were then compared with the ICRP-116 DCs. For photons, there were significant differences by up to ~2.8 times especially at energies <0.3 MeV. For neutrons, the differences were generally small over the entire energy region (mostly <20%). The general impact of the DRF-based skeletal DCs on the effective dose calculations was negligibly small, supporting the validity of the ICRP-116 effective DCs despite their skeletal DCs derived from the simple method. Meanwhile, we believe that the DRF-based skeletal DCs could be beneficial in better estimates of skeletal doses of individuals for risk assessments.

New thyroid models for ICRP pediatric mesh-type reference computational phantoms

  • Yeon Soo Yeom ;Chansoo Choi ;Bangho Shin ;Suhyeon Kim ;Haegin Han ;Sungho Moon ;Gahee Son;Hyeonil Kim;Thang Tat Nguyen;Beom Sun Chung;Se Hyung Lee ;Chan Hyeong Kim
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4698-4707
    • /
    • 2022
  • As part of the ICRP Task Group 103 project, we developed ten thyroid models for the pediatric mesh-type reference computational phantoms (MRCPs). The thyroid is not only a radiosensitive target organ needed for effective dose calculation but an important source region particularly for radioactive iodines. The thyroid models for the pediatric MRCPs were constructed by converting those of the pediatric voxel-type reference computational phantoms (VRCPs) in ICRP Publication 143 to a high-quality mesh format, faithfully maintaining their original topology. At the same time, we improved several anatomical parameters of the thyroid models for the pediatric MRCPs, including the mass, overlying tissue thickness, location, and isthmus dimensions. Absorbed doses to the thyroid for the pediatric MRCPs for photon external exposures were calculated and compared with those of the pediatric VRCPs, finding that the differences between the MRCPs and VRCPs were not significant except for very low energies (<0.03 MeV). Specific absorbed fractions (target ⟵ thyroid) for photon internal exposures were also compared, where significant differences were frequently observed especially for the target organs/tissues close to the thyroid (e.g., a factor of ~1.2-~327 for the thymus as a target) due mainly to anatomical improvement of the MRCP thyroid models.

Investigation on Individual Variation of Organ Doses for Photon External Exposures: A Monte Carlo Simulation Study

  • Yumi Lee;Ji Won Choi;Lior Braunstein;Choonsik Lee;Yeon Soo Yeom
    • Journal of Radiation Protection and Research
    • /
    • 제49권1호
    • /
    • pp.50-64
    • /
    • 2024
  • Background: The reference dose coefficients (DCs) of the International Commission on Radiological Protection (ICRP) have been widely used to estimate organ doses of individuals for risk assessments. This approach has been well accepted because individual anatomy data are usually unavailable, although dosimetric uncertainty exists due to the anatomical difference between the reference phantoms and the individuals. We attempted to quantify the individual variation of organ doses for photon external exposures by calculating and comparing organ DCs for 30 individuals against the ICRP reference DCs. Materials and Methods: We acquired computed tomography images from 30 patients in which eight organs (brain, breasts, liver, lungs, skeleton, skin, stomach, and urinary bladder) were segmented using the ImageJ software to create voxel phantoms. The phantoms were implemented into the Monte Carlo N-Particle 6 (MCNP6) code and then irradiated by broad parallel photon beams (10 keV to 10 MeV) at four directions (antero-posterior, postero-anterior, left-lateral, right-lateral) to calculate organ DCs. Results and Discussion: There was significant variation in organ doses due to the difference in anatomy among the individuals, especially in the kilovoltage region (e.g., <100 keV). For example, the red bone marrow doses at 0.01 MeV varied from 3 to 7 orders of the magnitude depending on the irradiation geometry. In contrast, in the megavoltage region (1-10 MeV), the individual variation of the organ doses was found to be negligibly small (differences <10%). It was also interesting to observe that the organ doses of the ICRP reference phantoms showed good agreement with the mean values of the organ doses among the patients in many cases. Conclusion: The results of this study would be informative to improve insights in individual-specific dosimetry. It should be extended to further studies in terms of many different aspects (e.g., other particles such as neutrons, other exposures such as internal exposures, and a larger number of individuals/patients) in the future.

ICRP 103 권고기반의 밀착형·비밀착형 가공제품 사용으로 인한 몬테칼로 전산모사 피폭선량 평가체계 개발 (Development of the Monte Carlo Simulation Radiation Dose Assessment Procedure for NORM added Consumer Adhere·Non-Adhere Product based on ICRP 103)

  • 고호정;노시완;이재호;염연수;이재기
    • Journal of Radiation Protection and Research
    • /
    • 제40권3호
    • /
    • pp.124-131
    • /
    • 2015
  • 원료물질 또는 공정부산물을 가공하거나 이를 원료로 하여 제조된 제품인 가공제품은 함유된 천연방사성핵종(우라늄, 토륨, 포타슘 등)으로부터 감마선 방출로 외부피폭을 유발할 수 있다. 따라서 본 연구에서는 방사성핵종 농도 우라늄 토륨 $1Bq{\cdot}g^{-1}$, 포타슘 $10Bq{\cdot}g^{-1}$을 가정하고 평형상태의 감마선방출을 가정하여 최종사용자의 사용환경을 반영하여 몬테칼로 전산모사로 복셀팬텀인 ICRP 기준팬텀과 ICRP 권고 103을 적용하여 가공제품의 연간피폭선량을 계산하고 체계를 개발하였다. 가공제품은 사용환경에 따라 피부비밀착형(석고보드, 음이온 벽지, 음이온 페인트)과 피부밀착형(팔찌, 목걸이, 벨트, 뜸질기)으로 구분하였고 기하학적 모델링은 일반가구가 거주하는 주택의 유형 분포추이와 설계지침을 반영하여 룸모델링($3m{\times}4m{\times}2.8m$ 보수적으로 밀폐된 방)과 복셀팬텀 분할면에 직접 가공제품을 모사하였다. 사용시간은 한국형 노출지수 개발 및 운영체계 구축 보고서를 참고하였으며 알 수 없는 제품은 보수적으로 24시간을 가정하였다. 본 연구에서 가공제품의 연간 유효선량은 0.00003 ~ 0.47636 mSv로 평가되었으며 벨트류 장기등가선량률을 확인하여 복셀팬텀에 가공제품을 직접 모사하는 것의 의미를 확인하였다.