• 제목/요약/키워드: ICP-OES

Search Result 200, Processing Time 0.022 seconds

Effective removal of non-radioactive and radioactive cesium from wastewater generated by washing treatment of contaminated steel ash

  • P. Sopapan;U. Lamdab;T. Akharawutchayanon;S. Issarapanacheewin;K. Yubonmhat;W. Silpradit;W. Katekaew;N. Prasertchiewchan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.516-522
    • /
    • 2023
  • The co-precipitation process plays a key role in the decontamination of radionuclides from low and intermediate levels of liquid waste. For that reason, the removal of Cs ions from waste solution by the co-precipitation method was carried out. A simulated liquid waste (133Cs) was prepared from a 0.1 M CsCl solution, while wastewater generated by washing steel ash served as a representative of radioactive cesium solution (137Cs). By co-precipitation, potassium ferrocyanide was applied for the adsorption of Cs ions, while nickel nitrate and iron sulfate were selected for supporting the precipitation. The amount of residual Cs ions in the CsCl solution after precipitation and filtration was determined by ICP-OES, while the radioactivity of 137Cs was measured using a gamma-ray spectrometer. After cesium removal, the amount of cesium appearing in both XRD and SEM-EDS was analyzed. The removal efficiency of 133Cs was 60.21% and 51.86% for nickel nitrate and iron sulfate, respectively. For the ash-washing solution, the removal efficiency of 137Cs was revealed to be more than 99.91% by both chemical agents. This implied that the co-precipitation process is an excellent strategy for the effective removal of radioactive cesium in waste solution treatment.

Determination of trace boron in steels by prompt gamma-ray activation analysis (즉발감마선방사화분석법에 의한 철강시료 중의 붕소 측정)

  • Kim, I.J.;Cho, K.H.;Paul, R.L.
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.302-306
    • /
    • 2009
  • A trace amount of boron in steel significantly influences its mechanical and physical properties. A prompt gamma ray activation analysis (PGAA) method is used to measure boron in low alloy steel samples of KRISS 101-01-C21~C26. NIST SRMs of 362, 364, 1761 and 1767 serve as the control standards to validate the measurement method. The measured values of the NIST SRMs are consistent with their certified values within the expected uncertainties, except for that of NIST SRM 362. Experimental uncertainties are evaluated according to the guidelines given by the International Organization for Standardization (ISO). The expanded uncertainties are calculated with a coverage factor of 2, at approximately 95% confidence level. The calculated relative expanded uncertainties of boron mass fractions are between 3% and 7% at the mg/kg level. The results are compared with the results measured by the solvent extraction-inductively coupled optical emission spectrometry (ICP/OES) method.

Evaluation of Grain Zinc and Iron Contents of Wheat Germplasm

  • Jinhee Park;Kyeong-Hoon Kim;Chang-Hyun Choi;Kyeong-Min Kim;Go Eun Lee;Chuloh Cho;Chon-Sik Kang;Jiyoung Shon;Jong-Min Ko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.297-297
    • /
    • 2022
  • Wheat is the staple food crop in the word, but wheat products have a low bioavailability of iron and zinc. So in the developing world, where wheat is a staple food, it suffers from micronutrients deficiency. This study was conducted to generate wheat varieties with enhanced grain Zn and Fe contents. Sixty wheat resource were cultivated over 2 years (2019-2021) in the field of NICS, Jeonju, Republic of Korea, to identify agronomic traits. Wheat grains were ground using grinder and analyzed whole wheat flour protein contents and Fe and Zn contents using ICP-OES. The average contents of Zn and Fe grain were 4.6 mg/100g (2.4~8.8 mg/100g) and 4.5 mg/100g (2.4~7.9 mg/100g), respectively. The contents of Fe and Zn in the wheat grain had a positive correlation with the protein content of whole wheat flour, but there was no correlation with heading date (4.22~5.27) and the thousand kernel weight (21.3~57.5 g). Although there was year variation, six resources with high contents of Fe (>5.2 mg/100 g) and Zn (>5.3 mg/100 g) grain in 2 years were selected. These results provide information for selecting breeding materials for biofortified wheat, and further studies on germplasms genetic variations and bioavailability are needed.

  • PDF

A Study on the Extraction of Monasil PCA using Liquid CO2 (액체 이산화탄소 이용한 Monasil PCA 추출에 대한 연구)

  • Cho, Dong Woo;Oh, Kyoung Shil;Bae, Won;Kim, Hwayong;Lee, Kab-Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.684-689
    • /
    • 2012
  • Poly(acrylic acid) (PAA) microspheres is one of the widely-used polymeric materials for the bio-field application and the electric materials. For the synthesis of PAA microspheres, the polymerization technique using surfactants is applied. After the synthesis, the purification and separation processes are required for the removal of surfactant. When general organic solvents were used, many problems, such as huge amount of waste solvent, additional separation processes, and the possibility of residual media, were occurred. Thus, High-pressure Soxhlet extraction using liquid $CO_2$ was developed to solve these problems. In this study, High-pressure Soxhlet extraction of the synthesized PAA microspheres using liquid $CO_2$ was conducted for the removal of Monasil PCA which is used for the dispersion polymerization of acrylic acid in compressed liquid Dimethyl ether (DME). The morphology of the extracted PAA particles was checked by field emission scanning electron microscopy (FE-SEM) and the residual concentration of Monasil PCA was analyzed by inductively coupled plasma - Optical Emission Spectrometer (ICP-OES). For studying the effect of the solvent effect, Soxhlet extraction was conducted using n-hexane, liquid DME, and liquid $CO_2$. In case of n-hexane, some extracted PAA microspheres were produced. However, deformation was also occurred due to the high thermal energy of n-hexane vapor. Liquid DME could not remove Monasil PCA. When using liquid $CO_2$, the extracted PAA microspheres which were free for the residual solvent were produced without deformation. For finding the optimum operating condition, high-pressure Soxhlet extraction was conducted for 8 hours with changing the temperature of reboiler and condenser. When the extractor temperature is $19.6{\pm}0.2^{\circ}C$ and the pressure is $51.5{\pm}0.5$ bar, the best removal efficiency was obtained.

Experimental Study on the Geochemical and Mineralogical Alterations in a Supercritical CO2-Groundwater-Zeolite Sample Reaction System (초임계 이산화탄소-지하수-제올라이트 시료 반응계에서의 지화학적 및 광물학적 변화에 관한 실험적 연구)

  • Park, Eundoo;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.421-430
    • /
    • 2014
  • In this study, a series of autoclave experiments were conducted in order to investigate the geochemical and mineralogical effects of carbon dioxide on deep subsurface environments. High pressure and temperature conditions of $50^{\circ}C$ and 100 bar, which are representative environments for geological $CO_2$ sequestration, were created in stainless-steel autoclaves for simulating the interactions in the $scCO_2$-groundwater-mineral reaction system. Zeolite, a widespread mineral in Pohang Basin where many researches have been focused as a candidate for geological $CO_2$ sequestration, and groundwater sampled from an 800 m depth aquifer were applied in the experiments. Geochemical and mineralogical alterations after 30 days of $scCO_2$-groundwater-zeolite sample reactions were quantitatively examined by XRD, XRF, and ICP-OES investigations. The results suggested that dissolution of zeolite sample was enhanced under the acidic condition induced by dissolution of $scCO_2$. As the cation concentrations released from zeolite sample increase, $H^+$ in groundwater was consumed and pH increases up to 10.35 after 10 days of reaction. While cation concentrations showed increasing trends in groundwater due to dissolution of the zeolite sample, Si concentrations decreased due to precipitation of amorphous silicate, and Ca concentrations decreased due to cation exchange and re-precipitation of calcite. Through the reaction experiments, it was observed that introduction of $CO_2$ could make alterations in dissolution characteristics of minerals, chemical compositions and properties of groundwater, and mineral compositions of aquifer materials. Results also showed that geochemical reactions such as cation exchange or dissolution/precipitation of minerals could play an important role to affect physical and chemical characteristics of geologic formations and groundwater.

Heavy Metal Contents and Safety Evaluation of Commercial Salts in Seoul (서울시 유통 소금의 중금속 함량 및 안전성 평가)

  • Kim, Ae-Kyung;Cho, Sung-Ja;Kwak, Jae-Eun;Kum, Jin-Young;Kim, Il-Young;Kim, Jung-Hun;Chae, Young-Zoo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.1
    • /
    • pp.129-135
    • /
    • 2012
  • This study was to investigate the heavy metal content of 55 commercial salts in the Seoul area. There were 22 types of solar sea salt, 17 types of processed salt and 16 types of reworked salt. Looked at another way, there were 22 types of domestic salt and 33 types of salt imported from France, the U.S., Japan, Australia, New Zealand, and Argentina. The samples were measured using both a mercury analyzer and an Inductively-Coupled Plasma Optical Emission Spectrometer (ICP-OES). The average heavy metal contents for commercial salts were Pb $0.281{\pm}0.344$, Cd $0.035{\pm}0.221$, Cr $0.364{\pm}0.635$, Cu $0.182{\pm}0.313$, As $0.046{\pm}0.062$, Ni $0.155{\pm}0.247$, Al $5.753{\pm}10.746$, Co $0.028{\pm}0.211$ and Hg $0.001{\pm}0.001$ mg/kg. The leads were detected highly in solar sea salt rather than in processed salt or reworked salt. Also chrome, arsenic and nickel were found more in processed salt. There were large differences in aluminum content between imported solar sea salt and processed salt. Aluminum was highly detected in French products, showing that salt can be affected by regional differences. The weekly average intakes of Pb, Cd, Cr, Cu, and Hg from commercial salt were 1.652% (0.000~6.754), 0.372% (0.000~7.214), 3.177% (0.000~26.279), 0.008% (0.001~0.049), and 0.031% (0.000~0.094) respectively compared with Provisional Tolerable Weekly Intakes established by the Joint FAO/WHO Expert Committee for the evaluation of food safety. The content of heavy metals from commercial salts was determined to be at safe levels.

Sugar and Sodium Content of Franchise Chickens and Market Chickens (프랜차이즈 치킨과 대형마트 내 판매 치킨의 당과 나트륨 함량 조사)

  • Lee, Young-Ju;Jung, So-Young;Kim, Nam-Hoon;Park, Young-Ae;Jo, Ju-Yeon;Kim, Youn-Cheon;Lee, Sang-Me;Kim, Moo-Sang
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.2
    • /
    • pp.118-124
    • /
    • 2020
  • We investigated the content of sugar and sodium in 4 types of chicken (fried, seasoned, soy sauce-flavored, cheese powder-flavored). A total of 123 samples were collected from franchise stores and markets in Seoul. The sugar content of chicken samples was analyzed by HPLC-ELSD (High Performance Liquid Chromatography-Evaporative Light Scattering Detector). The average sugar content of seasoned chicken was highest at 8.7±2.3 g/100 g while that of fried chicken was lowest at 0.6±0.3 g/100 g. The average content of sugar sorted by place of sale showed a significant difference (P<0.05). The sodium content in chicken samples was analysed using the ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry). The sodium content of seasoned chicken with cheese powder was the highest at 627.0±109.2 mg/100 g and that of fried chicken was the lowest at 448.0±65.3 mg/100 g. The sugar content of seasoned chicken sold in both franchise stores and markets was found to exceed the 50 g daily level as recommended by the WHO. In addition, the average sodium content in seasoned chicken (franchise stores and markets) and cheese-powdered chicken was more than twice as high as the daily 2,000 mg recommended by the WHO.

CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag (괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용)

  • Yoo, Yeongsuk;Choi, Hongbeom;Bang, Jun-Hwan;Chae, Soochun;Kim, Ji-Whan;Kim, Jin-Man;Lee, Seung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ${\geq}98%$ purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.

Influence of usage environment from camping cooking utensils on migration of hazardous metals (사용 환경에 따른 캠핑용 조리 기구로부터 유해금속 용출의 변화)

  • Lee, Jin-hee;Kim, Ji-Yeon;Park, Ye-Seul;Park, Sang-Gyu;Lee, Jae-Ho;Yoon, Jong-Ho;Kim, Gyung-Tae;Han, Gi-Dong
    • Food Science and Preservation
    • /
    • v.24 no.8
    • /
    • pp.1094-1102
    • /
    • 2017
  • Hazardous metals leaching experiment was carried out in accordance with various usage environments for camping cooking utensils distributed in the market. There was a significant difference in the degree of migration for lead, arsenic, cadmium and nickel defending on the solvent and how to use, although they were all appropriate for criteria. In general, the migrated amount of aluminum was increased in acidic condition, and the migrated amount of arsenic was increased in salty condition. Physical scratches increased the overall release of hazardous metals from the portable pots and pans for camping in all solvents. Especially, in 0.5% citric acid solution, cadmium was migrated by physical scratch in stainless steel and hard aluminum pots and pans. The longer the leaching time, the higher the migration of aluminum in acid condition and arsenic in basic condition. From these results, it is desirable to use the cooking utensil for camping without being exposed to strong acidic or basic solution and scratches in order to reduce the migration of hazardous metals from them.

A Study on Migration of Heavy Metals from Kitchen Utensils Including Glassware, Ceramics, Enamel, Earthenware and Plastics (유리제 등 조리기구 중 중금속 이행에 관한 연구)

  • Choi, Jae-Chon;Park, Se-Jong;Goh, Hyeah;Lee, Ju Yeun;Eom, Mi Ok;Kim, Meehye
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.334-339
    • /
    • 2014
  • The purpose of our study was to investigate the migration level of lead (Pb), cadmium (Cd), antimony (Sb), arsenic (As), hexavalent chromium ($Cr^{6+}$) and mercury (Hg) from cookwares into food simulants and to evaluate the safety of each heavy metals. The test articles for heavy metals were glassware, ceramics, enamel, earthenware, polypropylene and polyethylene cookwares for Pb and Cd, enamel for Sb, earthenware for As, polyethylene and polypropylene cookwares for $Cr^{6+}$ and Hg. All the article samples of 391 intended for contact with foods were purchased in domestic markets. Pb, Cd, Sb and As were analyzed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), $Cr^{6+}$ by UV visible spectrophotometer and Hg by mercury analyzer. The migration levels of heavy metals in all the samples were within the migration limits of Ministry of Food and Drug Safety (MFDS). As a result of safety evaluation, our results showed that the estimated daily intakes (EDI, mg/kg bw/day) were $9.12{\times}10^{-6}$ and $8.83{\times}10^{-7}$ for Pb and Cd from ceramics and $1.19{\times}10^{-5}$, $1.23{\times}10^{-5}$ and $7.52{\times}10^{-6}$ for Pb, Cd and Sb from enamel. Tolerable daily intakes (TDI, mg/kg bw/day) were established respectively as 0.0036, 0.00081, 0.0021, and 0.0006 for Pb, Cd, As and Hg by JECFA (Joint FAO/WHO Expert Committee on Food Additives), as 0.0060 for Sb by WHO (World Health Organization). When comparing with TDIs, the EDIs accounted for 0.25% and 0.11% for Pb and Cd from ceramics and 0.33%, 1.52% and 0.13% for Pb, Cd and Sb from enamel.