• Title/Summary/Keyword: ICP algorithms

Search Result 17, Processing Time 0.026 seconds

6D ICP Based on Adaptive Sampling of Color Distribution (색상분포에 기반한 적응형 샘플링 및 6차원 ICP)

  • Kim, Eung-Su;Choi, Sung-In;Park, Soon-Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.401-410
    • /
    • 2016
  • 3D registration is a computer vision technique of aligning multi-view range images with respect to a reference coordinate system. Various 3D registration algorithms have been introduced in the past few decades. Iterative Closest Point (ICP) is one of the widely used 3D registration algorithms, where various modifications are available nowadays. In the ICP-based algorithms, the closest points are considered as the corresponding points. However, this assumption fails to find matching points accurately when the initial pose between point clouds is not sufficiently close. In this paper, we propose a new method to solve this problem using the 6D distance (3D color space and 3D Euclidean distances). Moreover, a color segmentation-based adaptive sampling technique is used to reduce the computational time and improve the registration accuracy. Several experiments are performed to evaluate the proposed method. Experimental results show that the proposed method yields better performance compared to the conventional methods.

3D Etching Profile used Inductive Coupled Plasma (ICP) Source with Ambipolar Drift and Binary-Collision Effect. (쌍극성표동 효과와 이체충돌효과를 고려한 ICP(Inductive Coupled Plasma) 3차원 식각)

  • 이영직;이강환;이주율;강정원;문원하;손명식;황호정
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.891-894
    • /
    • 1999
  • ICP reactor produces high-density and high-uniformity plasma in large area, are has excellent characteristic of direction in the case of etching. Until now, many algorithms used one mesh method. These algorithms are not appropriate for sub 0.1 ${\mu}{\textrm}{m}$ device technologies which should deal with each ion. These algorithms could not present exactly straggle and interaction between projectile ions and could not consider reflection effects due to interactions among next projectile ions, reflected ions and sputtering ions, simultaneously. And difficult consider am-bipolar drift effect.

  • PDF

Development of New Etching Algorithm for Ultra Large Scale Integrated Circuit and Application of ICP(Inductive Coupled Plasma) Etcher (초미세 공정에 적합한 ICP(Inductive Coupled Plasma) 식각 알고리즘 개발 및 3차원 식각 모의실험기 개발)

  • 이영직;박수현;손명식;강정원;권오근;황호정
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.942-945
    • /
    • 1999
  • In this work, we proposed Proper etching algorithm for ultra-large scale integrated circuit device and simulated etching process using the proposed algorithm in the case of ICP (inductive coupled plasma) 〔1〕source. Until now, many algorithms for etching process simulation have been proposed such as Cell remove algorithm, String algorithm and Ray algorithm. These algorithms have several drawbacks due to analytic function; these algorithms are not appropriate for sub 0.1 ${\mu}{\textrm}{m}$ device technologies which should deal with each ion. These algorithms could not present exactly straggle and interaction between Projectile ions and could not consider reflection effects due to interactions among next projectile ions, reflected ions and sputtering ions, simultaneously In order to apply ULSI process simulation, algorithm considering above mentioned interactions at the same time is needed. Proposed algorithm calculates interactions both in plasma source region and in target material region, and uses BCA (binary collision approximation4〕method when ion impact on target material surface. Proposed algorithm considers the interaction between source ions in sheath region (from Quartz region to substrate region). After the collision between target and ion, reflected ion collides next projectile ion or sputtered atoms. In ICP etching, because the main mechanism is sputtering, both SiO$_2$ and Si can be etched. Therefore, to obtain etching profiles, mask thickness and mask composition must be considered. Since we consider both SiO$_2$ etching and Si etching, it is possible to predict the thickness of SiO$_2$ for etching of ULSI.

  • PDF

The Alignment of Triangular Meshes Based on the Distance Feature Between the Centroid and Vertices (무게중심과 정점 간의 거리 특성을 이용한 삼각형 메쉬의 정렬)

  • Minjeong, Koo;Sanghun, Jeong;Ku-Jin, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.525-530
    • /
    • 2022
  • Although the iterative closest point (ICP) algorithm has been widely used to align two point clouds, ICP tends to fail when the initial orientation of the two point clouds are significantly different. In this paper, when two triangular meshes A and B have significantly different initial orientations, we present an algorithm to align them. After obtaining weighted centroids for meshes A and B, respectively, vertices that are likely to correspond to each other between meshes are set as feature points using the distance from the centroid to the vertices. After rotating mesh B so that the feature points of A and B to be close each other, RMSD (root mean square deviation) is measured for the vertices of A and B. Aligned meshes are obtained by repeating the same process while changing the feature points until the RMSD is less than the reference value. Through experiments, we show that the proposed algorithm aligns the mesh even when the ICP and Go-ICP algorithms fail.

Automatic Global Registration for Terrestrial Laser Scanner Data (지상레이저스캐너 데이터의 자동 글로벌 보정)

  • Kim, Chang-Jae;Eo, Yang-Dam;Han, Dong-Yeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.281-287
    • /
    • 2010
  • This study compares transformation algorithms for co-registration of terrestrial laser scan data. Pair-wise transformation which is used for transformation of scan data from more than two different view accumulates errors. ICP algorithm commonly used for co-registration between scan data needs initial geometry information. And it is difficult to co-register simultaneously because of too many control points when managing scan at the same time. Therefore, this study perform global registration technique using matching points. Matching points are extracted automatically from intensity image by SIFT and global registration is performed using GP analysis. There are advantages for operation speed, accuracy, automation in suggested global registration algorithm. Through the result from it, registration algorithms can be developed by considering accuracy and speed.

Development of Fixture for Reducing Errors in Registration of 3D Laser Measuring System (Registration 오차감소를 위한 3차원 비접촉식 측정용 Fixture 개발)

  • Kim Yeun Sul;Jin Young Ju;Lee Hi Koan;Yang Gyun Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.107-113
    • /
    • 2005
  • This paper presents a method to reduce errors in registration, which is used in transformation coordinate system of the multiple measuring data. In general, the ICP algorithms and feature-based approaches are used for registration. In order to measure wrap-around object, it is necessary to change the scanning direction or set-up of the object. A fixture is made to reduce registration errors caused by inaccurate center point of tooling balls, providing the more accurate registration method. And, the motorized fixture controls rotation and tilting to get precise the measuring data and registration. The proposed motorized fixture and registration method have advantages in accurate registration and precise measurement, compared with the conventional methods.

A Progressive Rendering Method to Enhance the Resolution of Point Cloud Contents (포인트 클라우드 콘텐츠 해상도 향상을 위한 점진적 렌더링 방법)

  • Lee, Heejea;Yun, Junyoung;Kim, Jongwook;Kim, Chanhee;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.258-268
    • /
    • 2021
  • Point cloud content is immersive content that represents real-world objects with three-dimensional (3D) points. In the process of acquiring point cloud data or encoding and decoding point cloud data, the resolution of point cloud content could be degraded. In this paper, we propose a method of progressively enhancing the resolution of sequential point cloud contents through inter-frame registration. To register a point cloud, the iterative closest point (ICP) algorithm is commonly used. Existing ICP algorithms can transform rigid bodies, but there is a disadvantage that transformation is not possible for non-rigid bodies having motion vectors in different directions locally, such as point cloud content. We overcome the limitations of the existing ICP-based method by registering regions with motion vectors in different directions locally between the point cloud content of the current frame and the previous frame. In this manner, the resolution of the point cloud content with geometric movement is enhanced through the process of registering points between frames. We provide four different point cloud content that has been enhanced with our method in the experiment.

A reverse engineering system for reproducing a 3D human bust (인체 흉상 복제를 위한 역공학 시스템)

  • 최회련;전용태;장민호;노형민;박세형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.15-19
    • /
    • 2001
  • A dedicated reverse engineering(RE) system for rapid manufacturing of human head in a 3D bust has been developed. The first step in the process is to capture the surface details of a human head and shoulder by three scanners based upon the digital moire fringe technique. Then the multiple scans captured from different angles are aligned and merged into a single polygonal mesh, and the aligned data set is refined by smoothing, subdividing or hole filling process. Finally, the refined data set is sent to a 4-axis computer numerically control(NC) machine to manufacture a replica. In this paper, we mainly describe on the algorithms and software for aligning multiple data sets. The method is based on the recently popular Iterative Closest Point(ICP) algorithm that aligns different polygonal meshes into one common coordinate system. The ICP algorithm finds the nearest positions on one scan to a collection of points on the other scan by minimizing the collective distance between different scans. We also integrate some heuristics into the ICP to enhance the aligning process. A typical example is presented to validate the system and further research work is also discussed.

  • PDF

HK Curvature Descriptor-Based Surface Registration Method Between 3D Measurement Data and CT Data for Patient-to-CT Coordinate Matching of Image-Guided Surgery (영상 유도 수술의 환자 및 CT 데이터 좌표계 정렬을 위한 HK 곡률 기술자 기반 표면 정합 방법)

  • Kwon, Ki-Hoon;Lee, Seung-Hyun;Kim, Min Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.597-602
    • /
    • 2016
  • In image guided surgery, a patient registration process is a critical process for the successful operation, which is required to use pre-operative images such as CT and MRI during operation. Though several patient registration methods have been studied, we concentrate on one method that utilizes 3D surface measurement data in this paper. First, a hand-held 3D surface measurement device measures the surface of the patient, and secondly this data is matched with CT or MRI data using optimization algorithms. However, generally used ICP algorithm is very slow without a proper initial location and also suffers from local minimum problem. Usually, this problem is solved by manually providing the proper initial location before performing ICP. But, it has a disadvantage that an experience user has to perform the method and also takes a long time. In this paper, we propose a method that can accurately find the proper initial location automatically. The proposed method finds the proper initial location for ICP by converting 3D data to 2D curvature images and performing image matching. Curvature features are robust to the rotation, translation, and even some deformation. Also, the proposed method is faster than traditional methods because it performs 2D image matching instead of 3D point cloud matching.

Robust Matching Algorithm for Optical Images (광학 영상의 강인한 정합 알고리즘)

  • Yang, Han-Jin;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.248-253
    • /
    • 2011
  • This paper proposes the robust matching algorithm for optical images obtained by WSI(White-light Scanning Interferometer) machine. The matching algorithms are divided by two part according to the matching points: algorithm whether the matching points between two images exist or not. Also, after matching the images, we propose the algorithm to smooth the matched image. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.