• Title/Summary/Keyword: ICP MS

Search Result 497, Processing Time 0.024 seconds

Fate and Bioaccumulation of Zinc Oxide Nanoparticles in a Microcosm (산화아연 나노물질의 미소생태계 내 거동 및 생물축적)

  • Kim, Eunjeong;Lee, Jae-woo;Jo, Eunhye;Sung, Hwa Kyung;Yoo, Sun Kyoung;Kim, Kyung-tae;Shin, Yu-jin;Kim, Ji-eun;Park, Sun-Young;Eom, Ig-chun;Kim, Pilje
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.3
    • /
    • pp.194-201
    • /
    • 2017
  • Objectives: Zinc oxide nanoparticles (ZnO NPs) are widely used in various commercial products, but they are exposed to the environment and can induce toxicity. In this study, we investigated the environmental fate and bioaccumulation of ZnO NPs in a microcosm. Methods: The microcosm was composed of water, soil (Lufa Soil 2.2) and organisms (Oryzias latipes, Neocaridina denticulata, Semisulcospira libertina). Point five and 5 mg/L of ZnO NPs were exposed in the microcosm for 14 days. Total Zn concentrations were measured using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and intracellular NPs were observed using Transmission Electron Microscopy (TEM). Results: In the initial stages of exposure, the Zn concentrations in water increased in all exposure groups and then decreased, while the Zn concentration in soil increased after three hours for the 5 mg/L solution. Zn concentrations also showed increasing trends in N. denticulata and S. libertina at 0.5 and 5 mg/L, and in O. latipes at 5 mg/L. Accumulation of NPs was found in the livers of O. latipes and hepatopancreas of N. denticulata and S. libertina. Conclusions: In the early stages of exposure, ZnO NPs remained in the water, and then were transported to the soil and test species. Unlike other species, total Zn concentrations in N. denticulata and S. libertina increased for both 0.5 mg/L and 5 mg/L. Therefore, ZnO NPs were more easily accumulated in zoobenthos than in fish.

Influence of shape and finishing on the corrosion of palladium-based dental alloys

  • Milheiro, Ana;Muris, Joris;Kleverlaan, Cornelis J.;Feilzer, Albert J.
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.56-61
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate the effects of the surface treatment and shape of the dental alloy on the composition of the prosthetic work and its metallic ion release in a corrosive medium after casting. MATERIALS AND METHODS. Orion Argos (Pd-Ag) and Orion Vesta (Pd-Cu) were used to cast two crowns and two disks. One of each was polished while the other was not. Two as-received alloys were also studied making a total of 5 specimens per alloy type. The specimens were submersed for 7 days in a lactic acid/sodium chloride solution (ISO standard 10271) and evaluated for surface structure characterization using SEM/EDAX. The solutions were quantitatively analysed for the presence of metal ions using ICP-MS and the results were statistically analysed with one-way ANOVA and a Tukey post-hoc test. RESULTS. Palladium is released from all specimens studied (range $0.06-7.08{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$), with the Pd-Cu alloy releasing the highest amounts. For both types of alloys, ion release of both disk and crown pairs were statistically different from the as-received alloy except for the Pd-Ag polished crown (P>.05). For both alloy type, disk-shaped pairs and unpolished specimens released the highest amounts of Pd ions (range $0.34-7.08{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$). Interestingly, in solutions submerged with cast alloys trace amounts of unexpected elements were measured. CONCLUSION. Shape and surface treatment influence ion release from dental alloys; polishing is a determinant factor. The release rate of cast and polished Pd alloys is between $0.06-0.69{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$, which is close to or exceeding the EU Nickel Directive 94/27/EC compensated for the molecular mass of Pd ($0.4{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$). The composition of the alloy does not represent the element release, therefore we recommend manufacturers to report element release after ISO standard corrosion tests beside the original composition.

The Study on the Water Quality Characteristics of Barium in the Raw Water of Domestic Natural Mineral Water (국내 먹는샘물 원수 중 바륨(Ba)의 수질 특성에 관한 연구)

  • Lee, Leenae;Ahn, Kyunghee;Yang, Mihee;Choi, Incheol;Chung, Hyenmi;Lee, Wonseok;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.416-423
    • /
    • 2017
  • The subject samples include 150 and 170 samples collected from intake holes in the former and latter half of 2015, respectively. They were analyzed with ICP-MS. The average concentration of detected barium was $10.54{\mu}g/L$ ($0.23{\sim}168.22{\mu}g/L$) and $8.21{\mu}g/L$ ($0{\sim}255.65{\mu}g/L$) for the former and latter halves of 2015, respectively. The concentration distribution was the highest for the precambrian era at $19.07{\mu}g/L$ and the lowest Cenozoic era at $4.92{\mu}g/L$. The average value for sedimentary, metamorphic, and igneous rocks was $7.84{\mu}g/L$, $20.84{\mu}g/L$, and $9.47{\mu}g/L$, respectively, which indicates that it was the highest for metamorphic rocks. The study also analyzed correlations between barium and other minerals and found that magnesium recorded 0.44 and 0.71 for the former and latter half of 2015, respectively. As for barium concentration according to depth, it was relatively low in shallow groundwater (under 200 m) with its average concentration at $14.33{\mu}g/L$ and $14.71{\mu}g/L$ for the former and latter half of 2015, respectively. It was $8.53{\mu}g/L$ and $4.04{\mu}g/L$ in deep groundwater (over 200 m) for the two periods, respectively, The risk assessment results show that its average risk was HQ 0.00139 and HQ 0.00163 for the former and latter half of 2015, respectively, being considerably lower than "1", which suggests that barium poses few possibilities of consumption risk.

Monitoring and Risk Assessment of Heavy Metals in Perennial Root Vegetables (다년생 근채류 중 중금속 모니터링 및 위해성평가)

  • Cho, Min-Ja;Choi, Hoon;Kim, Hye-Jeong;Youn, Hye-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • BACKGROUND: This study was carried out to survey the levels of heavy metals in perennial root vegetables and to assess dietary exposure and risk to the Korean population health.METHODS AND RESULTS: Perennial root vegetables (n=214) including Panax ginseng C.A mayer, Woodcultivated ginseng, Codonopsis lanceolata, and Platycodon granditloum were collected from markets or harvested from farmhouse in Korea. Lead(Pb), cadmium(Cd) and arsenic (As) analysis were performed with microwave device and inductively coupled plasma mass spectrometer. Limit of detection for heavy metals were 0.010~0.050 μg/kg, while limit of quantitation were 0.035~0.175 μg/kg. The recovery results were in the range of 76~102%. The average contents of heavy metals in perennial root vegetables were in the range of Pb 0.013(Panax ginseng C.A Mayer)~0.070 (Wood-cultivated ginseng) mg/kg, Cd 0.009(Panax ginseng C.A Mayer)~0.034(Codonopsis lanceolata) mg/kg, and As 0.002(Panax ginseng C.A Mayer)~0.004(Plafycodon grandiflorum) mg/kg, respectively. For risk assessment, daily intakes of heave metals were estimated and risk indices were calculated in comparison with reference dose. The dietary exposures of heavy metals through usual intake were Pb 0.070 μg/day, Cd 0.041 μg/day and As 0.008 μg/day, taking 0.03%, 0.08% and 0.0003% as risk indices, respectively.CONCLUSION: The risk level for Korean population exposed to heavy metals through intake of perennial root vegetables was far low, indicating of little possibility of concern.

Trace level analysis of Pb in plasma by inductively coupled plasma/mass spectrometry (유도결합플라즈마 질량분석법을 이용한 혈장 중 극미량 납 분석)

  • Lee, Sung-Bae;Yang, Jeong-Sun;Choi, Sung-Bong;Shin, Ho-Sang
    • Analytical Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.190-196
    • /
    • 2012
  • The human exposure of lead has usually detected the amount of lead in the whole blood, however, this method has a shortcoming to give the information on the short-term exposure to lead. In that sense, it is desirable to estimates the level of lead in plasma to draw the chronic bio-marker of lead exposure even though it is difficult to measure lead of several ng/L. An inductively coupled plasma-mass spectrometry (ICP-MS) method was developed for determining lead in plasma as the chronic bio-marker of lead of workers. To minimize the contamination of lead from the environment, we constructed class 1,000 clean room and compared the amount of floating dust before and after the operation of the clean room. The limit of detection (LOD) and the limit of quantification (LOQ) of lead in fetal bovine serum were 4.3 ng/L and 12.2 ng/L by NIOSH method (statistical calculation method) and 7.0 ng/L and 22.1 ng/L by signal/noise ratio, respectively. The accuracy was in a range of 92.3-101.3%, and the precision of the assay was less than 4% in the samples spiked in the concentration of 20 ng/L and 2,000 ng/L. The method was simple, reproducible and sensitive enough to permit reliable analysis of lead to the ng/L level in plasma and/or serum. The method was also useful for the biological monitoring of chronic exposure to lead.

Evaluation of accumulated particulate matter on roadside tree leaves and its metal content (가로수 수종별 잎의 미세먼지 축적량 및 금속 원소 함량 평가)

  • Kwon, Seon-Ju;Cha, Seung-Ju;Lee, Joo-Kyung;Park, Jin Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.161-168
    • /
    • 2020
  • It is known that different plant species have ability to deposit different amounts of particulate matter (PM) on their leaves and plants can absorb heavy metals in PM through their leaves. Heavy metals in PM can have toxic effect on human body and plants. Therefore, PM on different roadside trees at Chungbuk national University including box tree (Buxus koreana), yew (Taxus cuspidate), royal azalea (Rhododendron yedoense), and retusa fringetree (Chionanthus retusa) was quantified based on particle size (PM>10 and PM2.5-10). The metal concentration in PM accumulated on leaves was analyzed using inductively coupled plasma-mass spectroscopy. In this study, the mass of PM>10 deposited on the surface of the tree leaves ranged from 6.11 to 32.7 ㎍/㎠, while the mass of PM2.5-10 ranged from 0 to 14.8 ㎍/㎠. The royal azaleas with grooves and hair on the leaf surface retained PM particles for longer time, while the yews and box trees with wax on leaf surfaces accumulated more PM. The PM contained elements in crustal material such as Al, Ca, Mg, and Fe and heavy metals including Cu, Pb and Zn. The concentration of elements in crustal material was higher in the coarser size, while heavy metal concentration was relatively higher in the finer size fraction. The Mn, Cd, Cu, Ni, Pb, and Zn concentrations of leaves and PM2.5-10 were significantly correlated indicating that PM was taken up through tree leaves.

Occurrence of the lowermost part of the Yucheon Group and its SHRIMP U-Pb ages in Hyeonpoong and Bugok areas (현풍-부곡일원 최하부 유천층군의 산상과 SHRIMP U-Pb 연대)

  • Ghim, Yong Sik;Ko, Kyoungtae;Lee, Byung Choon
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.397-411
    • /
    • 2020
  • The Cretaceous Yucheon Group is volcano-sedimentary successions that are formed by volcanic activities of the Gyeongsang Volcanic Arc. Lack of the detailed field researches on the Yucheon Group results in poor understanding of the formation time and the tempo-spatial development of the volcanic arc. Also, this causes difficulties to reconstruct the depositional history from the Sindong and Hayang groups to the Yucheon Group. In this study, we conducted field research targeting to the interface between topmost part of the Hayang Group and the lowermost part of the Yucheon Group from Hyeonpoong to Bugok areas. We also identified depositional timing of the lowermost part of the Yucheon Group using SHRIMP U-Pb zircon age dating. This Yucheon Group is composed of tuff and lapilli tuff, conformably overlying the Jindong Formation. The results of SHRIMP U-Pb zircon age are 97 to 96 Ma, indicating cessation of deposition of the Hayang Group at 97 to 96 Ma by input of pyroclastic materials into the Jinju Subbasin during the explosive volcanic eruptions from the Gyeongsang Volcanic Arc. In comparison with field researches and results of LA-ICP-MS zircon U-Pb age dating (88-85 Ma) of the lowermost part of the Yucheon Group in Gyeongju areas, the volcanic activities that formed Yucheon Group and their influence ranges varied tempo-spatially. This is probably due to distance difference from the volcanic arc or establishment of the paleo-drainage system from the Gyeongsang Volcanic Arc to nearby lowlands.

Improvement of accuracy in quantitative TXRF analysis of soil sample by applying external standard method (외부표준법을 적용한 토양시료의TXRF 정량분석 정확도 개선)

  • Park, Jinkyu;Park, Ranhee;Han, Sun Ho;Lim, Sang Ho;Lee, Chi Gyu;Song, Kyuseok
    • Analytical Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.261-268
    • /
    • 2016
  • TXRF is a powerful technique for the soil sample analysis due to its ability to conduct quantitative analysis of powder sample without complicated pre-treatment processes. The conventional internal standard method used for this technique suffers from relatively low accuracy because of varying matrix effects of soil. In order to improve the accuracy, external standard method was applied to analyze two types of soil samples; acid-dissolutionized soil solution and detergent-suspended soil powder. Individual ICP-AES/MS grade standards were mixed, diluted and measured to create standard curves, but applying these curves for analyzing the soil solution sample did not make any improvement in comparison with the internal standard method. On the other hand, standard curves were created with using standard soil powders for the analysis of soil powder samples, and we found that this method increased the accuracy significantly relative to the internal standard method. Especially, Al, Fe, K, Ca, Ti, Ba, Mn, Sr, Rb, Cu was measured with relatively high accuracy (relative error = ${\pm}20%$).

Monitoring of Cd, Hg, Pb, and As and Risk Assessment for Commercial Medicinal Plants (국내 유통 약용작물 중 카드뮴, 수은, 납, 비소 함량 모니터링 및 위해성 평가)

  • Kim, Hyuck-Soo;Kim, Kwon-Rae;Hong, Chang-Oh;Go, Woo-Ri;Jeong, Seon-Hee;Yoo, Ji-Hyock;Cho, Nam-Jun;Hong, Jin-Hwan;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.282-287
    • /
    • 2015
  • BACKGROUND: The current study was carried out to investigate Cd, Hg, Pb and As contaminations in 222 commercial medicinal plants and to estimate the potential health risk through dietary intake of commercial medicinal plants in Korea.METHODS AND RESULTS: The Cd, Hg, Pb, and As in medicinal plants were analyzed by ICP/MS and mercury analyzer.The potential health risk was estimated using risk assessment tools. Total amount of Cd in medicinal plants with 29% samples exceeded the standard limit legislated in 'Pharmaceutical Affairs Act' while all plant samples were lower than the standard limit value for As, Hg, and Pb. However, when applying the standard limit for root vegetable (fresh weight) in the Food Sanitation Act, four samples exceeded the standard limit of Pb. For health risk assessment, the values of cancer risk probability were 0.3~5.9×10-7which were less than the acceptable cancer risk of 10-6~10-4for regulatory purpose. Also, Hazard quotientvalues were lower than 1.0.CONCLUSION: Therefore, these results demonstrated that human exposure to Cd, Hg, Pb, and As through dietary intake of commercial medicinal plants might notcause adverse health effects although some medicinal plants were higher than the standard limit values for Cd and Pb.

Heavy Metal Analysis of Inhabitants from City of the Seoul, Korea (서울지역 거주 성인 모발의 유해 중금속 함량 분석)

  • Im, Eun-Jin;Ha, Byung-Jo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.1
    • /
    • pp.27-32
    • /
    • 2009
  • Human hair is an excretory system for trace metals and thus metal content in human hair can reflect the body status. The investigation of trace elements in human hair has been correlated with the diagnosis of various diseases as well as the monitoring of deficiency statues in nutrition. Many chronic diseases may be related to mineral status, some may be related to toxic mineral. Hair samples were collected from 120 inhabitants of the city of Seoul, Korea. In this study the concentrations of 10 elements (Hg, Pb, Cd, Al, As, U, Bi, Sb, Ba, Be) in hair were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The conclusions showed that people in Seoul, Korea were affected by some kinds of toxic minerals. The Hg concentrations of male are higher than those of female and reference range. The mean concentration of Sb was higher in the female than male and reference range. In age distribution, the mean concentration of Hg was in 40's are higher than 20's and 30's and reference range. The concentrations of Al were the highest in the 20's. After analyzing, we concluded that a compounded treatment should be conducted, which considers the variety of factors related to detoxification.