Browse > Article
http://dx.doi.org/10.5806/AST.2016.29.6.261

Improvement of accuracy in quantitative TXRF analysis of soil sample by applying external standard method  

Park, Jinkyu (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Park, Ranhee (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Han, Sun Ho (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Lim, Sang Ho (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Lee, Chi Gyu (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Song, Kyuseok (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Publication Information
Analytical Science and Technology / v.29, no.6, 2016 , pp. 261-268 More about this Journal
Abstract
TXRF is a powerful technique for the soil sample analysis due to its ability to conduct quantitative analysis of powder sample without complicated pre-treatment processes. The conventional internal standard method used for this technique suffers from relatively low accuracy because of varying matrix effects of soil. In order to improve the accuracy, external standard method was applied to analyze two types of soil samples; acid-dissolutionized soil solution and detergent-suspended soil powder. Individual ICP-AES/MS grade standards were mixed, diluted and measured to create standard curves, but applying these curves for analyzing the soil solution sample did not make any improvement in comparison with the internal standard method. On the other hand, standard curves were created with using standard soil powders for the analysis of soil powder samples, and we found that this method increased the accuracy significantly relative to the internal standard method. Especially, Al, Fe, K, Ca, Ti, Ba, Mn, Sr, Rb, Cu was measured with relatively high accuracy (relative error = ${\pm}20%$).
Keywords
TXRF; soil; quantitative analysis; external standard method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. B. Smith, L. G. Woodruff, R. M. O'Leary, W. F. Cannon, R. G. Garrett, J. E. Kilburn and M. B. Goldhaber, Appl. Geochem., 24(8), 1357-1368 (2009).   DOI
2 E. K. Towett, K. D. Shepherd, and G. Cadisch, Sci. Total Environ., 463-464, 374-388 (2013).   DOI
3 K. Shepherd and M. Walsh, J. Near Infrared Spectrosc., 15(1), 1-20 (2007).   DOI
4 E. K. Towett, K. D. Shepherd, J. E. Tondoh, L. A. Winowiecki, T. Lulseged, M. Nyambura, A. Sila, T.-G. Vagen and G. Cadisch, Geoderma Reg., 5, 157-168 (2015).   DOI
5 H. Stosnach, Spectrochim. Acta B., 61(10-11 SPEC. ISS.), 1141-1145 (2006).   DOI
6 G. H. Floor, E. Marguí, M. Hidalgo, I. Queralt, P. Kregsamer, C. Streli and G. Roman-Ross, Chem. Geol., 352, 19-26 (2013).   DOI
7 R. M. Morgan, P. Wiltshire, A. Parker and P. A. Bull, Forensic Science International, 162(1-3), 152-162(2006).   DOI
8 O. Lopez-Costas, O. Lantes-Suarez and A. Martinez Cortizas, J. Archaeol. Sci., 67, 43-51 (2016).   DOI
9 J. Kruse, M. Abraham, W. Amelung, C. Baum, R. Bol, O. Kuhn, H. Lewandowski, J. Niederberger, Y. Oelmann, C. Ruger, J. Santner, M. Siebers, N. Siebers, M. Spohn, J. Vestergren, A. Vogts and P. Leinweber, J. Plant Nutr. Soil Sci., 178(1), 43-88 (2015).   DOI
10 M. Felipe-Sotelo, M. J. Cal-Prieto, M. P. Gomez-Carracedo, J. M. Andrade, A. Carlosena and D. Prada, Anal. Chim. Acta, 571(2), 315-323 (2006).   DOI
11 M. Savio, S. Cerutti, L. D. Martinez, P. Smichowski and R. A. Gil, Talanta, 82(2), 523-527 (2010).   DOI
12 R. Klockenkamper and A. Von Bohlen, X-Ray Spectrom., 25(4), 156-162 (1996).   DOI
13 P. Wobrauschek, X-Ray Spectrom., 36(5), 289-300 (2007).   DOI
14 H. Stosnach, Lab report. Bruker AXS Microanalysis GmbH., [Report No.: XRF 426] (2007).
15 T. Y. Cherkashina, S. V. Panteeva and G. V. Pashkova, Spectrochim. Acta B., 99, 59-66 (2014).   DOI