KIM, Jae-Hak;LEE, Chang-Min;KIM, Hyeong-Joon;LEE, Dong-Ha
Journal of the Korean Association of Geographic Information Studies
/
v.22
no.4
/
pp.229-240
/
2019
3D geo-spatial model have been widely used in the field of Civil Engineering, Medical, Computer Graphics, Urban Management and many other. Especially, the demand for high quality 3D spatial information such as precise road map construction has explosively increased, MMS and UAV techniques have been actively used to acquire them more easily and conveniently in surveying and geo-spatial field. However, in order to perform 3D modeling by integrating the two data set from MMS and UAV, its so needed an proper registration method is required to efficiently correct the difference between the raw data acquisition sensor, the point cloud data generation method, and the observation accuracy occurred when the two techniques are applied. In this study, we obtained UAV point colud data in Yeouido area as the study area in order to determine the automatic registration performance between MMS and UAV point cloud data using ICP(Iterative Closet Point) method. MMS observations was then performed in the study area by dividing 4 zones according to the level of overlap ratio and observation noise with based on UAV data. After we manually registered the MMS data to the UAV data, then compared the results which automatic registered using ICP method. In conclusion, the higher the overlap ratio and the lower the noise level, can bring the more accurate results in the automatic registration using ICP method.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.38
no.1
/
pp.35-41
/
2020
3D laser scanners are an effective way to quickly acquire a large amount of data about an object. Recently, it is used in various fields such as surveying, displacement measurement, 3D data generation of objects, construction of indoor spatial information, and BIM(Building Information Model). In order to utilize the point cloud data acquired through the 3D laser scanner, it is necessary to make the data acquired from many stations through a matching process into one data with a unified coordinate system. However, analytical researches on the accuracy of point cloud data according to the registration method are insufficient. In this study, we tried to analyze the accuracy of registration method of point cloud data acquired through 3D laser scanner. The point cloud data of the study area was acquired by 3D laser scanner, the point cloud data was registered by the ICP(Iterative Closest Point) method and the shape registration method through the data processing, and the accuracy was analyzed by comparing with the total station survey results. As a result of the accuracy evaluation, the ICP and the shape registration method showed 0.002m~0.005m and 0.002m~0.009m difference with the total station performance, respectively, and each registration method showed a deviation of less than 0.01m. Each registration method showed less than 0.01m of variation in the experimental results, which satisfies the 1: 1,000 digital accuracy and it is suggested that the registration of point cloud data using ICP and shape matching can be utilized for constructing spatial information. In the future, matching of point cloud data by shape registration method will contribute to productivity improvement by reducing target installation in the process of building spatial information using 3D laser scanner.
Registration is the process aligning the range data sets from different views in a common coordinate system. In order to achieve a complete 3D model, we need to refine the data sets after coarse registration. One of the most popular refinery techniques is the iterative closest point (ICP) algorithm, which starts with pre-estimated overlapping regions. This paper presents an improved ICP algorithm that can automatically register multiple 3D data sets from unknown viewpoints. The sensor projection that represents the mapping of the 3D data into its associated range image is used to determine the overlapping region of two range data sets. By combining ICP algorithm with the sensor projection constraint, we can make an automatic registration of multiple 3D sets without pre-procedures that are prone to errors and any mechanical positioning device or manual assistance. The experimental results showed better performance of the proposed method on a couple of 3D data sets than previous methods.
The Transactions of the Korean Institute of Power Electronics
/
v.15
no.4
/
pp.274-281
/
2010
This paper proposes a DFPS (Dual Frequency Power Source) impedance matching device for uniformity improvement of a semiconductor plasma etching system. The DFPS consists of two parts for safe plasma processing on large-area substrates. The first part is an ICP (Inductively Coupled Plasma) for high integration by using ferrite core. The second part is a CCP (Capacitive Coupled Plasma) to control uniformity of whole cells. Proposed DFPS can achieve high productivity improvement required for semiconductor equipment industry. The proposed plasma system is analyzed, simulated and experimentally verified with a matching equipment at 27.12MHz and 400kHz.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.829-831
/
2022
포인트 클라우드 콘텐츠는 움직임이 있는 콘텐츠를 연속된 프레임에 3 차원 위치정보와 대응하는 색상으로 기록한 데이터이다. 강체 포인트 클라우드 데이터를 정합하기 위해서는 고전적인 방법이지만 강력한 ICP 정합 알고리즘을 사용한다. 그러나 국소적인 모션 벡터가 있는 비 강체 포인트 클라우드 콘텐츠는 기존의 ICP 정합 알고리즘을 통해서는 프레임 간 정합이 불가능하다. 본 논문에서는 비 강체 포인트 클라우드 콘텐츠를 지역적 확률 모델을 사용하여 프레임 간 포인트의 쌍을 맺고 개별 포인트 간의 모션벡터를 구해 정합 하는 방법을 제안한다. 정합 대상의 데이터를 2 차원 투영을 하여 구조화시키고 정합 할 데이터를 투영하여 후보군 포인트를 선별한다. 선별된 포인트에서 깊이 값 비교와 좌표 및 색상 유사도를 측정하여 적절한 쌍을 찾아준다. 쌍을 찾은 후 쌍으로 모션 벡터를 더하여 정합을 수행하면 비 강체 포인트 클라우드 콘텐츠 데이터에 대해서도 정합이 가능해진다.
Point cloud content is immersive content that represents real-world objects with three-dimensional (3D) points. In the process of acquiring point cloud data or encoding and decoding point cloud data, the resolution of point cloud content could be degraded. In this paper, we propose a method of progressively enhancing the resolution of sequential point cloud contents through inter-frame registration. To register a point cloud, the iterative closest point (ICP) algorithm is commonly used. Existing ICP algorithms can transform rigid bodies, but there is a disadvantage that transformation is not possible for non-rigid bodies having motion vectors in different directions locally, such as point cloud content. We overcome the limitations of the existing ICP-based method by registering regions with motion vectors in different directions locally between the point cloud content of the current frame and the previous frame. In this manner, the resolution of the point cloud content with geometric movement is enhanced through the process of registering points between frames. We provide four different point cloud content that has been enhanced with our method in the experiment.
KIPS Transactions on Software and Data Engineering
/
v.5
no.9
/
pp.401-410
/
2016
3D registration is a computer vision technique of aligning multi-view range images with respect to a reference coordinate system. Various 3D registration algorithms have been introduced in the past few decades. Iterative Closest Point (ICP) is one of the widely used 3D registration algorithms, where various modifications are available nowadays. In the ICP-based algorithms, the closest points are considered as the corresponding points. However, this assumption fails to find matching points accurately when the initial pose between point clouds is not sufficiently close. In this paper, we propose a new method to solve this problem using the 6D distance (3D color space and 3D Euclidean distances). Moreover, a color segmentation-based adaptive sampling technique is used to reduce the computational time and improve the registration accuracy. Several experiments are performed to evaluate the proposed method. Experimental results show that the proposed method yields better performance compared to the conventional methods.
KIPS Transactions on Software and Data Engineering
/
v.1
no.1
/
pp.43-54
/
2012
This paper presents a new localization technique of an UGV(Unmanned Ground Vehicle) by matching ortho-edge images generated from a DSM (Digital Surface Map) which represents the 3D geometric information of an outdoor navigation environment and 3D range data which is obtained from a LIDAR (Light Detection and Ranging) sensor mounted at the UGV. Recent UGV localization techniques mostly try to combine positioning sensors such as GPS (Global Positioning System), IMU (Inertial Measurement Unit), and LIDAR. Especially, ICP (Iterative Closest Point)-based geometric registration techniques have been developed for UGV localization. However, the ICP-based geometric registration techniques are subject to fail to register 3D range data between LIDAR and DSM because the sensing directions of the two data are too different. In this paper, we introduce and match ortho-edge images between two different sensor data, 3D LIDAR and DSM, for the localization of the UGV. Details of new techniques to generating and matching ortho-edge images between LIDAR and DSM are presented which are followed by experimental results from four different navigation paths. The performance of the proposed technique is compared to a conventional ICP-based technique.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.28
no.2
/
pp.281-287
/
2010
This study compares transformation algorithms for co-registration of terrestrial laser scan data. Pair-wise transformation which is used for transformation of scan data from more than two different view accumulates errors. ICP algorithm commonly used for co-registration between scan data needs initial geometry information. And it is difficult to co-register simultaneously because of too many control points when managing scan at the same time. Therefore, this study perform global registration technique using matching points. Matching points are extracted automatically from intensity image by SIFT and global registration is performed using GP analysis. There are advantages for operation speed, accuracy, automation in suggested global registration algorithm. Through the result from it, registration algorithms can be developed by considering accuracy and speed.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.33
no.1
/
pp.45-52
/
2015
The interoperability of multi-source data has become more important due to various digital maps, produced from public institutions and enterprises. In this study, the automatic matching algorithm of multi-source building data using hierarchical matching was proposed. At first, we divide digital maps into blocks and perform the primary geometric registration of buildings with the ICP algorithm. Then, corresponding building pairs were determined by evaluating the similarity of overlap area, and the matching threshold value of similarity was automatically derived by the Otsu binary thresholding. After the first matching, we extracted error matching candidates buildings which are similar with threshold value to conduct the secondary ICP matching and to make a matching decision using turning angle function analysis. For the evaluation, the proposed method was applied to representative public digital maps, road name address map and digital topographic map 2.0. As a result, the F measures of matching and non-matching buildings increased by 2% and 17%, respectively. Therefore, the proposed method is efficient for the matching of building polygons from multi-source digital maps.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.