• Title/Summary/Keyword: ICP 정합

Search Result 42, Processing Time 0.031 seconds

Automatic Registration of Point Cloud Data between MMS and UAV using ICP Method (ICP 기법을 이용한 MSS 및 UAV 간 점군 데이터 자동정합)

  • KIM, Jae-Hak;LEE, Chang-Min;KIM, Hyeong-Joon;LEE, Dong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.229-240
    • /
    • 2019
  • 3D geo-spatial model have been widely used in the field of Civil Engineering, Medical, Computer Graphics, Urban Management and many other. Especially, the demand for high quality 3D spatial information such as precise road map construction has explosively increased, MMS and UAV techniques have been actively used to acquire them more easily and conveniently in surveying and geo-spatial field. However, in order to perform 3D modeling by integrating the two data set from MMS and UAV, its so needed an proper registration method is required to efficiently correct the difference between the raw data acquisition sensor, the point cloud data generation method, and the observation accuracy occurred when the two techniques are applied. In this study, we obtained UAV point colud data in Yeouido area as the study area in order to determine the automatic registration performance between MMS and UAV point cloud data using ICP(Iterative Closet Point) method. MMS observations was then performed in the study area by dividing 4 zones according to the level of overlap ratio and observation noise with based on UAV data. After we manually registered the MMS data to the UAV data, then compared the results which automatic registered using ICP method. In conclusion, the higher the overlap ratio and the lower the noise level, can bring the more accurate results in the automatic registration using ICP method.

Accuracy Evaluation by Point Cloud Data Registration Method (점군데이터 정합 방법에 따른 정확도 평가)

  • Park, Joon Kyu;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • 3D laser scanners are an effective way to quickly acquire a large amount of data about an object. Recently, it is used in various fields such as surveying, displacement measurement, 3D data generation of objects, construction of indoor spatial information, and BIM(Building Information Model). In order to utilize the point cloud data acquired through the 3D laser scanner, it is necessary to make the data acquired from many stations through a matching process into one data with a unified coordinate system. However, analytical researches on the accuracy of point cloud data according to the registration method are insufficient. In this study, we tried to analyze the accuracy of registration method of point cloud data acquired through 3D laser scanner. The point cloud data of the study area was acquired by 3D laser scanner, the point cloud data was registered by the ICP(Iterative Closest Point) method and the shape registration method through the data processing, and the accuracy was analyzed by comparing with the total station survey results. As a result of the accuracy evaluation, the ICP and the shape registration method showed 0.002m~0.005m and 0.002m~0.009m difference with the total station performance, respectively, and each registration method showed a deviation of less than 0.01m. Each registration method showed less than 0.01m of variation in the experimental results, which satisfies the 1: 1,000 digital accuracy and it is suggested that the registration of point cloud data using ICP and shape matching can be utilized for constructing spatial information. In the future, matching of point cloud data by shape registration method will contribute to productivity improvement by reducing target installation in the process of building spatial information using 3D laser scanner.

Automatic Registration Method for Multiple 3D Range Data Sets (다중 3차원 거리정보 데이타의 자동 정합 방법)

  • 김상훈;조청운;홍현기
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1239-1246
    • /
    • 2003
  • Registration is the process aligning the range data sets from different views in a common coordinate system. In order to achieve a complete 3D model, we need to refine the data sets after coarse registration. One of the most popular refinery techniques is the iterative closest point (ICP) algorithm, which starts with pre-estimated overlapping regions. This paper presents an improved ICP algorithm that can automatically register multiple 3D data sets from unknown viewpoints. The sensor projection that represents the mapping of the 3D data into its associated range image is used to determine the overlapping region of two range data sets. By combining ICP algorithm with the sensor projection constraint, we can make an automatic registration of multiple 3D sets without pre-procedures that are prone to errors and any mechanical positioning device or manual assistance. The experimental results showed better performance of the proposed method on a couple of 3D data sets than previous methods.

CCP and ICP Combination Impedance Matching Device for Uniformity Improvement of Semiconductor Plasma Etching System (반도체 플라즈마 식각 시스템의 균일도 향상을 위한 CCP와 ICP 결합 임피던스정합 장치)

  • Jung, Doo-Yong;Nam, Chang-Woo;Lee, Jong-Ho;Choi, Dae-Kyu;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.274-281
    • /
    • 2010
  • This paper proposes a DFPS (Dual Frequency Power Source) impedance matching device for uniformity improvement of a semiconductor plasma etching system. The DFPS consists of two parts for safe plasma processing on large-area substrates. The first part is an ICP (Inductively Coupled Plasma) for high integration by using ferrite core. The second part is a CCP (Capacitive Coupled Plasma) to control uniformity of whole cells. Proposed DFPS can achieve high productivity improvement required for semiconductor equipment industry. The proposed plasma system is analyzed, simulated and experimentally verified with a matching equipment at 27.12MHz and 400kHz.

Non-rigid Point-Cloud Contents Registration Method used Local Similarity Measurement (부분 유사도 측정을 사용한 비 강체 포인트 클라우드 콘텐츠 정합 방법)

  • Lee, Heejea;Yun, Junyoung;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.829-831
    • /
    • 2022
  • 포인트 클라우드 콘텐츠는 움직임이 있는 콘텐츠를 연속된 프레임에 3 차원 위치정보와 대응하는 색상으로 기록한 데이터이다. 강체 포인트 클라우드 데이터를 정합하기 위해서는 고전적인 방법이지만 강력한 ICP 정합 알고리즘을 사용한다. 그러나 국소적인 모션 벡터가 있는 비 강체 포인트 클라우드 콘텐츠는 기존의 ICP 정합 알고리즘을 통해서는 프레임 간 정합이 불가능하다. 본 논문에서는 비 강체 포인트 클라우드 콘텐츠를 지역적 확률 모델을 사용하여 프레임 간 포인트의 쌍을 맺고 개별 포인트 간의 모션벡터를 구해 정합 하는 방법을 제안한다. 정합 대상의 데이터를 2 차원 투영을 하여 구조화시키고 정합 할 데이터를 투영하여 후보군 포인트를 선별한다. 선별된 포인트에서 깊이 값 비교와 좌표 및 색상 유사도를 측정하여 적절한 쌍을 찾아준다. 쌍을 찾은 후 쌍으로 모션 벡터를 더하여 정합을 수행하면 비 강체 포인트 클라우드 콘텐츠 데이터에 대해서도 정합이 가능해진다.

  • PDF

A Progressive Rendering Method to Enhance the Resolution of Point Cloud Contents (포인트 클라우드 콘텐츠 해상도 향상을 위한 점진적 렌더링 방법)

  • Lee, Heejea;Yun, Junyoung;Kim, Jongwook;Kim, Chanhee;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.258-268
    • /
    • 2021
  • Point cloud content is immersive content that represents real-world objects with three-dimensional (3D) points. In the process of acquiring point cloud data or encoding and decoding point cloud data, the resolution of point cloud content could be degraded. In this paper, we propose a method of progressively enhancing the resolution of sequential point cloud contents through inter-frame registration. To register a point cloud, the iterative closest point (ICP) algorithm is commonly used. Existing ICP algorithms can transform rigid bodies, but there is a disadvantage that transformation is not possible for non-rigid bodies having motion vectors in different directions locally, such as point cloud content. We overcome the limitations of the existing ICP-based method by registering regions with motion vectors in different directions locally between the point cloud content of the current frame and the previous frame. In this manner, the resolution of the point cloud content with geometric movement is enhanced through the process of registering points between frames. We provide four different point cloud content that has been enhanced with our method in the experiment.

6D ICP Based on Adaptive Sampling of Color Distribution (색상분포에 기반한 적응형 샘플링 및 6차원 ICP)

  • Kim, Eung-Su;Choi, Sung-In;Park, Soon-Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.401-410
    • /
    • 2016
  • 3D registration is a computer vision technique of aligning multi-view range images with respect to a reference coordinate system. Various 3D registration algorithms have been introduced in the past few decades. Iterative Closest Point (ICP) is one of the widely used 3D registration algorithms, where various modifications are available nowadays. In the ICP-based algorithms, the closest points are considered as the corresponding points. However, this assumption fails to find matching points accurately when the initial pose between point clouds is not sufficiently close. In this paper, we propose a new method to solve this problem using the 6D distance (3D color space and 3D Euclidean distances). Moreover, a color segmentation-based adaptive sampling technique is used to reduce the computational time and improve the registration accuracy. Several experiments are performed to evaluate the proposed method. Experimental results show that the proposed method yields better performance compared to the conventional methods.

Localization of Unmanned Ground Vehicle based on Matching of Ortho-edge Images of 3D Range Data and DSM (3차원 거리정보와 DSM의 정사윤곽선 영상 정합을 이용한 무인이동로봇의 위치인식)

  • Park, Soon-Yong;Choi, Sung-In
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.43-54
    • /
    • 2012
  • This paper presents a new localization technique of an UGV(Unmanned Ground Vehicle) by matching ortho-edge images generated from a DSM (Digital Surface Map) which represents the 3D geometric information of an outdoor navigation environment and 3D range data which is obtained from a LIDAR (Light Detection and Ranging) sensor mounted at the UGV. Recent UGV localization techniques mostly try to combine positioning sensors such as GPS (Global Positioning System), IMU (Inertial Measurement Unit), and LIDAR. Especially, ICP (Iterative Closest Point)-based geometric registration techniques have been developed for UGV localization. However, the ICP-based geometric registration techniques are subject to fail to register 3D range data between LIDAR and DSM because the sensing directions of the two data are too different. In this paper, we introduce and match ortho-edge images between two different sensor data, 3D LIDAR and DSM, for the localization of the UGV. Details of new techniques to generating and matching ortho-edge images between LIDAR and DSM are presented which are followed by experimental results from four different navigation paths. The performance of the proposed technique is compared to a conventional ICP-based technique.

Automatic Global Registration for Terrestrial Laser Scanner Data (지상레이저스캐너 데이터의 자동 글로벌 보정)

  • Kim, Chang-Jae;Eo, Yang-Dam;Han, Dong-Yeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.281-287
    • /
    • 2010
  • This study compares transformation algorithms for co-registration of terrestrial laser scan data. Pair-wise transformation which is used for transformation of scan data from more than two different view accumulates errors. ICP algorithm commonly used for co-registration between scan data needs initial geometry information. And it is difficult to co-register simultaneously because of too many control points when managing scan at the same time. Therefore, this study perform global registration technique using matching points. Matching points are extracted automatically from intensity image by SIFT and global registration is performed using GP analysis. There are advantages for operation speed, accuracy, automation in suggested global registration algorithm. Through the result from it, registration algorithms can be developed by considering accuracy and speed.

Automatic Matching of Building Polygon Dataset from Digital Maps Using Hierarchical Matching Algorithm (계층적 매칭 기법을 이용한 수치지도 건물 폴리곤 데이터의 자동 정합에 관한 연구)

  • Yeom, Junho;Kim, Yongil;Lee, Jeabin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • The interoperability of multi-source data has become more important due to various digital maps, produced from public institutions and enterprises. In this study, the automatic matching algorithm of multi-source building data using hierarchical matching was proposed. At first, we divide digital maps into blocks and perform the primary geometric registration of buildings with the ICP algorithm. Then, corresponding building pairs were determined by evaluating the similarity of overlap area, and the matching threshold value of similarity was automatically derived by the Otsu binary thresholding. After the first matching, we extracted error matching candidates buildings which are similar with threshold value to conduct the secondary ICP matching and to make a matching decision using turning angle function analysis. For the evaluation, the proposed method was applied to representative public digital maps, road name address map and digital topographic map 2.0. As a result, the F measures of matching and non-matching buildings increased by 2% and 17%, respectively. Therefore, the proposed method is efficient for the matching of building polygons from multi-source digital maps.