• Title/Summary/Keyword: ICP(iterative closest point)

Search Result 44, Processing Time 0.022 seconds

Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming (선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용)

  • Lee, Jang-Hyun;Yoon, Jong-Sung;Ryu, Cheol-Ho;Lee, Hwang-Beom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

Novel ICP Matching to Efficiently Interpolate Augmented Positions of Objects in AR (AR에서 객체의 증강 위치를 효율적으로 보간하기 위한 새로운 ICP 매칭)

  • Moon, YeRin;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.563-566
    • /
    • 2022
  • 본 논문에서는 증강현실에서 객체 증강 시, 특징점과 GPS를 이용하여 증강 위치를 효율적으로 보간할 수 있는 ICP(Iterative closest point) 매칭 기법을 제안한다. 다양한 환경에서 제한받지 않고 객체를 증강하기 위해 일반적으로 마커리스(Markerless) 방식을 사용하며, 대표적으로 평면 검출과 페이스 검출을 사용한다. 이는 현실과 자연스러운 동기화를 위한 것으로 계산은 작지만, 인식의 범위가 넓기 때문에 증강 위치에 대한 오차가 존재한다. 이러한 작은 오차는 특정 산업에서는 치명적일 수 있으며, 특히 건설이나 의료시설에서 발생하면 큰 사고로 이어진다. 객체를 증강 시킬 때 해당 환경에 대한 점 구름(Point cloud)을 수집하여 데이터베이스에 저장한다. 본 논문에서는 관측되는 점 구름과의 오차를 줄이기 위해 ICP 매칭 기법을 사용하며, 실린더 기반의 각도 보간을 이용하여 계산량을 줄인다. 결과적으로 특징점과 GPS를 이용하여 ICP 매칭 기법을 통해 효율적으로 처리함으로써, 증강 위치에 대한 정확도가 개선된 증강 방식을 보여준다.

  • PDF

A Fast Correspondence Matching for Iterative Closest Point Algorithm (ICP 계산속도 향상을 위한 빠른 Correspondence 매칭 방법)

  • Shin, Gunhee;Choi, Jaehee;Kim, Kwangki
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.373-380
    • /
    • 2022
  • This paper considers a method of fast correspondence matching for iterative closest point (ICP) algorithm. In robotics, the ICP algorithm and its variants have been widely used for pose estimation by finding the translation and rotation that best align two point clouds. In computational perspectives, the main difficulty is to find the correspondence point on the reference point cloud to each observed point. Jump-table-based correspondence matching is one of the methods for reducing computation time. This paper proposes a method that corrects errors in an existing jump-table-based correspondence matching algorithm. The criterion activating the use of jump-table is modified so that the correspondence matching can be applied to the situations, such as point-cloud registration problems with highly curved surfaces, for which the existing correspondence-matching method is non-applicable. For demonstration, both hardware and simulation experiments are performed. In a hardware experiment using Hokuyo-10LX LiDAR sensor, our new algorithm shows 100% correspondence matching accuracy and 88% decrease in computation time. Using the F1TENTH simulator, the proposed algorithm is tested for an autonomous driving scenario with 2D range-bearing point cloud data and also shows 100% correspondence matching accuracy.

6D ICP Based on Adaptive Sampling of Color Distribution (색상분포에 기반한 적응형 샘플링 및 6차원 ICP)

  • Kim, Eung-Su;Choi, Sung-In;Park, Soon-Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.401-410
    • /
    • 2016
  • 3D registration is a computer vision technique of aligning multi-view range images with respect to a reference coordinate system. Various 3D registration algorithms have been introduced in the past few decades. Iterative Closest Point (ICP) is one of the widely used 3D registration algorithms, where various modifications are available nowadays. In the ICP-based algorithms, the closest points are considered as the corresponding points. However, this assumption fails to find matching points accurately when the initial pose between point clouds is not sufficiently close. In this paper, we propose a new method to solve this problem using the 6D distance (3D color space and 3D Euclidean distances). Moreover, a color segmentation-based adaptive sampling technique is used to reduce the computational time and improve the registration accuracy. Several experiments are performed to evaluate the proposed method. Experimental results show that the proposed method yields better performance compared to the conventional methods.

Derivation of a Confidence Matrix for Orientation Components in the ICP Algorithm (ICP 알고리즘의 회전 성분 신뢰도 행렬 유도)

  • Lee, Byung-Uk;Kim, Chul-Min;Park, Rae-Hong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.69-76
    • /
    • 1998
  • This paper proposes a matrix which represents the confidence in the rotation components of the Iterative Closest Point (ICP) algorithm is image registratiion, The reliability of the ICP algorithm depends on the shape of the object. For example, an object with more complex features shows higher reliablility than the one with rotation symmetry such as a cylinder. We show that the reliablity of the ICP algorithm can be estimated when the input range data has additive noise. Finally, we demonstrate that the proposed reliability formula is in good agreement with the computer simulation.

  • PDF

Human Body Motion Tracking Using ICP and Particle Filter (반복 최근접점와 파티클 필터를 이용한 인간 신체 움직임 추적)

  • Kim, Dae-Hwan;Kim, Hyo-Jung;Kim, Dai-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.977-985
    • /
    • 2009
  • This paper proposes a real-time algorithm for tracking the fast moving human body. Although Iterative closest point (ICP) algorithm is suitable for real-time tracking due to its efficiency and low computational complexity, ICP often fails to converge when the human body moves fast because the closest point may be mistakenly selected and trapped in a local minimum. To overcome such limitation, we combine a particle filter based on a motion history information with the ICP. The proposed human body motion tracking algorithm reduces the search space for each limb by employing a hierarchical tree structure, and enables tracking of the fast moving human bodies by using the motion prediction based on the motion history. Experimental results show that the proposed human body motion tracking provides accurate tracking performance and fast convergence rate.

A Weighted Points Registration Method to Analyze Dimensional Errors Occurring during Shipbuilding Process (선박 건조 과정에서 발생하는 치수 오차 분석을 위한 가중 포인트 정합 방법)

  • Kwon, Kiyoun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.2
    • /
    • pp.151-158
    • /
    • 2016
  • It is important to analyze dimensional errors occurring during shipbuilding process. A ship is constructed by assembling blocks and installing outfits in assembled ship structure. Blocks and outfits have a main direction that has greater importance than other directions from the view point of dimensional error. Therefore, a main direction should have a greater weighting factor than other directions in order to achieve meaningful inspection results. In this paper, a modified point registration method based on iterative closest point (ICP) is proposed. In this method, a user determines one or two main directions among x, y, and z directions, and then each main direction is made to have a greater weighting factor than other directions. For points registration, mapping between measured points and design points are performed by the modified ICP in which weighting factor assigned to each main direction is considered.

Analysis of overlap ratio for registration accuracy improvement of 3D point cloud data at construction sites (건설현장 3차원 점군 데이터 정합 정확성 향상을 위한 중첩비율 분석)

  • Park, Su-Yeul;Kim, Seok
    • Journal of KIBIM
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • Comparing to general scanning data, the 3D digital map for large construction sites and complex buildings consists of millions of points. The large construction site needs to be scanned multiple times by drone photogrammetry or terrestrial laser scanner (TLS) survey. The scanned point cloud data are required to be registrated with high resolution and high point density. Unlike the registration of 2D data, the matrix of translation and rotation are used for registration of 3D point cloud data. Archiving high accuracy with 3D point cloud data is not easy due to 3D Cartesian coordinate system. Therefore, in this study, iterative closest point (ICP) registration method for improve accuracy of 3D digital map was employed by different overlap ratio on 3D digital maps. This study conducted the accuracy test using different overlap ratios of two digital maps from 10% to 100%. The results of the accuracy test presented the optimal overlap ratios for an ICP registration method on digital maps.

A Progressive Rendering Method to Enhance the Resolution of Point Cloud Contents (포인트 클라우드 콘텐츠 해상도 향상을 위한 점진적 렌더링 방법)

  • Lee, Heejea;Yun, Junyoung;Kim, Jongwook;Kim, Chanhee;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.258-268
    • /
    • 2021
  • Point cloud content is immersive content that represents real-world objects with three-dimensional (3D) points. In the process of acquiring point cloud data or encoding and decoding point cloud data, the resolution of point cloud content could be degraded. In this paper, we propose a method of progressively enhancing the resolution of sequential point cloud contents through inter-frame registration. To register a point cloud, the iterative closest point (ICP) algorithm is commonly used. Existing ICP algorithms can transform rigid bodies, but there is a disadvantage that transformation is not possible for non-rigid bodies having motion vectors in different directions locally, such as point cloud content. We overcome the limitations of the existing ICP-based method by registering regions with motion vectors in different directions locally between the point cloud content of the current frame and the previous frame. In this manner, the resolution of the point cloud content with geometric movement is enhanced through the process of registering points between frames. We provide four different point cloud content that has been enhanced with our method in the experiment.

The Alignment of Triangular Meshes Based on the Distance Feature Between the Centroid and Vertices (무게중심과 정점 간의 거리 특성을 이용한 삼각형 메쉬의 정렬)

  • Minjeong, Koo;Sanghun, Jeong;Ku-Jin, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.525-530
    • /
    • 2022
  • Although the iterative closest point (ICP) algorithm has been widely used to align two point clouds, ICP tends to fail when the initial orientation of the two point clouds are significantly different. In this paper, when two triangular meshes A and B have significantly different initial orientations, we present an algorithm to align them. After obtaining weighted centroids for meshes A and B, respectively, vertices that are likely to correspond to each other between meshes are set as feature points using the distance from the centroid to the vertices. After rotating mesh B so that the feature points of A and B to be close each other, RMSD (root mean square deviation) is measured for the vertices of A and B. Aligned meshes are obtained by repeating the same process while changing the feature points until the RMSD is less than the reference value. Through experiments, we show that the proposed algorithm aligns the mesh even when the ICP and Go-ICP algorithms fail.