• Title/Summary/Keyword: ICEMCFD

Search Result 5, Processing Time 0.016 seconds

CFD Analyses in a Single Cylinder Engine with Experimental Results (단기통 디젤엔진 계측결과와 전산해석)

  • Joo K. J.;Park H. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.121-127
    • /
    • 2002
  • The transient flow fields in direct injection engine was analyzed by using the STAR-CD CFD code during the intake/compression processes. The grids are generated by using the IC3M. The CFD results were compared with experimental data. The results showed that the used techniques were well suited for the flow analyses on any internal combustion engines.

  • PDF

Numerical Analysis on the Effects of Supply Channel and Jet Hole Arrangement on Heat Flow Characteristics of Impingement Jet (충돌제트에서의 유량공급 채널 및 제트 홀 배열에 따른 열유동 특성 수치해석)

  • Hwang, Byeong Jo;Chung, Heeyoon;Joo, Won Gu;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.77-86
    • /
    • 2016
  • A numerical analysis is performed to investigate the effect of a supply channel and jet hole arrangement on the heat flow characteristics of impingement jet. The jet holes in a supply channel are composed of a single or staggered array from the center of a leading edge channel. The software ICEMCFD is used to generate the structured grids for calculation domain and a CFD code CFX 15.0 to perform the simulation. The present solutions are validated by comparison with the experimental and numerical ones of others. A comparison of mass flow rates of impingement jets and Nusselt numbers on the impingement surface for the single or staggered arrays is made.

Transient Flow Analyses of the Intake and Compression Processes In a Direct Injection Engine (직분식 디젤엔진의 흡입$\cdot$압축 행정시 엔진 실린더 내의 비정상 유동 해석)

  • Joo K. J.;Park H. K.
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.17-24
    • /
    • 2002
  • The transient flow fields in a direct injection engine was analyzed by using the STAR-CD CFD code doting the intake/compression processes. The analyses were focused on the computation grid generation by using the IC3M code which is a pre-developed and especially well adapted for the analyses of internal combustion engine. The results showed that the used grid generation technique was well suited for the flow analyses on any internal combustion engine.

Transient Flow Analyses of the Intake and Compression Processes In Direct Injection Engines (직분식 디젤엔진의 흡입$\cdot$압축 행정시 엔진 실린더 내의 비정상 유동 해석)

  • Joo K. J.;Park H. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.63-69
    • /
    • 2001
  • The transient flow fields in direct injection engines were analyzed by using the STAR-CD CFD code during the intake/compression processes. The analyses were focused on the computation grid generation by using the IC3M code which is a pre-developed and especially well adapted for the analyses of internal combustion engines. The results showed that the used grid generation technique was well suited for the flow analyses on any internal combustion engines.

  • PDF

Development of simulation method for heating line optimization of E-Mold by using commercial CAE softwares (전산모사 프로그램을 이용한 E-MOLD의 Heating Line 배치의 최적화 설계에 관한 연구)

  • Chung, Jae-Youp;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1754-1759
    • /
    • 2008
  • To produce plastic parts that have fine pattern through conventional injection molding, a lot of difficulties follow. Therefore, rapid heating and cooling methods are good candidates for manufacturing injection-molded parts with micro/nano patterns. In this study, we adopted the E-Mold patent technology. The mold for E-Mold technology has a separate heated core with micro heaters. It is very important to optimize the lay-out of the heaters in heated core because it influences both control and distribution of mold temperature. We developed a optimization method of heating line lay-out by using commercial softwares and compared the output with the experimental results. We used Pro-Engineer Wildfire 2.0 for the mold design, ICEMCFD for mesh generation, and FLUENT for heat transfer simulation. The simulation results showed the temperature profile from $60^{\circ}C$ to $120^{\circ}C$ or $180^{\circ}C$ during heating and cooling process which were compared with the injection molding experiments. We concluded that the simulation could well explain the experimental results. It was shown that the E-Mold optimization design for heater lay-out could be available through the simulation.