• Title/Summary/Keyword: ICE1

Search Result 1,189, Processing Time 0.03 seconds

Storage Effects of Seawater and Tapwater Ice For Freshness of Mackerel(Scomber japonicus) (고등어 신선도 유지를 위한 해수와 담수 얼음의 저장효과)

  • Lee, Nahm-Gull
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.860-869
    • /
    • 2020
  • This study was conducted to see the effect of maintaining the freshness of mackerel caught offshore, through the chemical analysis method in seawater slurry ice(SS), sea water cube ice(SC), tap water slurry ice(TS) and tap water cube ice(TC). Among each ice mass, bacteria were below the drinking water standard and ammonia nitrogen was over the threshold of 11 mg/l in sea water. The turbidity of the seawater was severe compared to that of fresh water. Proximate compositions showed 72.7% moisture content, 20.5% protein, 5.25% lipid, and 1.3% ash content. Sea slurry ice was kept low in pH compared with fresh water ice. VBN increases were inhibited in all reservoirs at the beginning of the storage. Generally Sea ice was kept lower VBN value than the fresh water ice.

An Algorithm for Measurement of Pack Ice Concentration Using Localized Binarization of Quadtree-Subdivided Image (쿼드트리 분할영상의 국부이진화를 통한 팩아이스 집적도 측정 알고리즘)

  • Lee, Jeong-Hoon;Byun, Seok-Ho;Nam, Jong-Ho;Cho, Seong-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • Recently, many research works on the icebreaking vessels have been published as the possibility of passing Arctic routes has been increasing. The model ship test on the pack ice model in the ice basin is actively carried out as a way to investigate the performance of icebreaking vessels. In this test, the concentration of pack ice is important since it directly affects the performance. However, it is difficult to measure the concentration because not only the pack ice has uneven shape but also it keeps floating around in the basin. In this paper, an algorithm to identify the concentration of pack ice is introduced. From a digital image of pack ice obtained in the ice basin, the goal is to measure the area of pack ice using an image processing technique. Instead of the general global binarization that yields numerical errors in this problem, a local binarization technique, coupled with image subdivision based on the quadtree structure, is developed. The concentration results obtained by the developed algorithm are compared with the manually measured data to prove its accuracy.

Part1 : Numerical Code Validation and Quantitative Analyses of Ice Accretion around Airfoils (Part1 : 익형 주위 결빙 예측 코드 검증 및 정량적 분석)

  • Son, Chan-Kyu;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1094-1104
    • /
    • 2010
  • In the previous studies, the validation of numerical codes has been conducted based on the qualitative comparison of predicted ice shapes with experiments, which poses a significant limit on the systematic analysis of ice shapes due to the variation of meteorological conditions. In response to this, the numerical code has been quantitatively validated against available experiment for the ice accretion on cylinders and airfoils in the present study. Ice shapes accumulated on the bodies are systematically investigated with respect to various icing parameters. To this end, maximum thickness, heading direction and ice thickness are quantified and expressed in the polar coordinate system for the comparison with other numerical results. By applying the quantitative analysis, similar shapes are intuitively distinguished. The developed numerical code underestimates the ice accretion area and the ice thickness of lower surface. In order to improve the accuracy, further accurate aerodynamic solver is required for the water droplet trajectories.

Comparison of SSM/I Sea Ice Concentration with Kompsat-1 EOC Images of the Arctic and Antarctic (북극과 남극의 SSM/I Sea Ice Concentration과 Kompsat-1 EOC 영상의 비교)

  • Han Hyang-Sun;Lee Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.153-156
    • /
    • 2006
  • 북극과 남극의 해빙을 촬영한 Kompsat-1 EOC 영상을 SSM/I Sea Ice Concentration(SIC)과 비교하였다. EOC 영상은 2005년 $7{\sim}8$월 북극 해빙지역의 가장자리를 지나는 10개 궤도(624 영상)와 $9{\sim}11$월 남극대륙의 가장자리를 지나는 11개 궤도(676 영상)에서 얻어졌다. 그 중 구름의 영향이 없는 약 12%의 영상으로부터 감독분류와 육안분류를 통해 Multi-year ice와 First-year ice(M+F), Young ice(Y), New ice(N)로 해빙의 유형을 구분하여 SIC를 계산하였으며, 이를 NASA Team Algorithm(NTA)으로 계산된 SSM/I SIC와 비교하였다. 북극의 여름철에는 해빙의 시공간적 변화가 매우 크기 때문에 EOC SIC(M+F+Y+N)와 SSM/I SIC의 상관계수는 0.671로 잘 일치하지 않았다. 남극의 봄철에 N을 제외한 EOC SIC(M+F+Y)의 경우 SSM/I SIC와 0.873의 높은 상관계수를 가졌다. 이로부터 NTA로 계산된 남극의 SSM/I SIC가 M과 F를 비롯하여 Y도 포함하는 것을 알 수 있었다.

  • PDF

The Effective Young's Modulus of Model Ice Sheet in Ice Basin (빙해수조 모형빙판의 유효탄성계수 산출)

  • Lee, Jae-Hwan;Choi, Bong-Kyun;Kim, Tae-Wan;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.315-322
    • /
    • 2015
  • In this paper, the theory of rectangular plate on the elastic foundation is used to get the relation equation between the effective Young’s modulus and the ice sheet deflection by applying the characteristic length concept, since the model ice sheet is rectangular shape in KRISO (Korea Research Institute for Ships and Ocean Engineering) ice basin. The obtained relation equation is equal to that of using the circular plate theory. A device is made and used to measure the deflection of ice plate using LVDT (Linear Variable Differential Transformer) for several loading cases and the procedure of experiments measuring the deflection used for getting the Young’s modulus is explained. In addition, the flexural strength value obtained through flexural strength experiments is compared with that of finite element analysis using the obtained effective Young’s modulus. Also, a nonlinear FEA (Finite Element Analysis) of cantilever ice beam is done with eroding effect and LS-DYNA result shows the fracture of brittle ice under 1 mm/s velocity load.

Numerical Simulation on the Response of Moored Semi-submersible Under Ice Load (유빙 하중을 받는 계류된 반잠수식 시추선의 응답해석)

  • Kim, Jeong-Hwan;Kim, Yooil
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.177-183
    • /
    • 2018
  • This study simulated ice load and the motion response of a moored semi-submersible rig in pack-ice conditions using a finite element method. Ice flows of random size and shape were modeled, and interactions for ice-sea, ice-structure, ice-ice were simulated using a simplified method. Parameters for the simplified method such as drag force coefficient and the pressure-penetration relation were obtained based on the result of detailed analysis using the coupled Eulerian-Lagrangian method. The mooring lines were modeled by spring elements based on their stiffness. As a result of the simulation over 1,400 seconds, the force and motion response of the rig were obtained and validated using discrete elements and compared with the results found by the Krylov State Research Centre.

Review of Ice Characteristics in Ship-Iceberg Collisions

  • Lee, Tak-Kee;Park, Hyun-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.369-381
    • /
    • 2021
  • The International Ice Patrol (IIP) was established after the Titanic collided with an iceberg off the eastern coast of Canada in 1912 and sank, killing more than 1,500 people. Recently, the IIP has analyzed satellite images and provided safe operation information to vessels by tracking the occurrence and movement of icebergs. A large number of recent arctic studies mainly deal with sea ice formed by freezing seawater related to sea routes and resource development. The iceberg that collided with the Titanic was land-based ice that dislodged from a glacier and fell into the sea. The properties of these two types of ice are different. In addition, vessels operating in ice-covered waters such as the Arctic sea have an ice-breaking function or minimum ice-strengthened functions. Ships operating on transatlantic routes including the eastern coast of Canada do not necessarily require ice-strengthened functions. Hundreds to thousands of icebergs are discovered each year near the area where the Titanic sank. In this study, the status of ship-iceberg collision accidents was investigated to provide useful information to researchers, and the physical and mechanical characteristics of icebergs were investigated and summarized.

Numerical simulation of concrete abrasion induced by unbreakable ice floes

  • Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-69
    • /
    • 2019
  • This paper focuses on the numerical simulation of ice abrasion induced by unbreakable ice floe. Under the assumption that unbreakable floes behave as rigid body, the Discrete Element Method (DEM) was applied to simulate the interaction between a fixed structure and ice floes. DEM is a numerical technique which is eligible for computing the motion and effect of a large number of particles. In DEM simulation, individual ice floe was treated as single rigid element which interacts with each other following the given interaction rules. Interactions between the ice floes and structure were defined by soft contact and viscous Coulomb friction laws. To derive the details of the interactions in terms of interaction parameters, the Finite Element Method (FEM) was employed. An abrasion process between a structure and an ice floe was simulated by FEM, and the parameters in DEM such as contact stiffness, contact damping coefficient, etc. were calibrated based on the FEM result. Resultantly, contact length and contact path length, which are the most important factors in ice abrasion prediction, were calculated from both DEM and FEM and compared with each other. The results showed good correspondence between the two results, providing superior numerical efficiency of DEM.

Growth kinetics and pattern formation of ice dendrites at small subcoolings (작은 과냉각 상태에서 ice dendrite의 결정 성장 특성)

  • 구기갑
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.3
    • /
    • pp.197-208
    • /
    • 1995
  • An experiment study of the dendrite growth of ice crystals growing in quiescent pure subcooled water was made at small subcoolings of 0.035 K < ${\Delta}T$ < 1.000 K. It was observed that the growth kinetics and morphology are functions of not only subcooling but also thermal convection. When the subcooling is less than 0.35K, it was found that effect of thermal convection on growth kinetics of ice dendrites becomes important. Quantitiative measurements of growth velocity, $V_{G}$, and tip radii of the edge and basal planes, $R_{1}$ and $R_{2}$, were made simultaneously as a function of subcooling.

  • PDF

Estimating Ocean Tidal Constituents Using SAR Interferometric Time Series over the Sulzberger Ice Shelf, W. Antarctica

  • Baek, Sang-Ho;Shum, C.K.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.343-353
    • /
    • 2018
  • Ocean tides in Antarctica are not well constrained mostly due to the lack of tidal observations. Especially, tides underneath and around ice shelves are uncertain. InSAR (Interferometric Synthetic Aperture Radar) data has been used to observe ice shelf movements primarily caused by ocean tides. Here, we demonstrate that it is possible to estimate tidal constituents underneath the Sulzberger ice shelf, West Antarctica, solely using ERS-1/2 tandem mission DInSAR (differential InSAR) observations. In addition, the tidal constituents can be estimated in a high-resolution (~200 m) grid which is beyond any tidal model resolution. We assume that InSAR observed ocean tidal heights can be derived after correcting the InSAR data for the effect of atmospheric loading using the inverse barometric effect, solid earth tides, and ocean tide loading. The ERS (European Remote Sensing) tandem orbit configuration of a 1-day separation between SAR data takes diminishes the sensitivity to major tidal constituents including $K_1$ and $S_2$. Here, the dominant tidal constituent $O_1$ is estimated using 8 differential interferograms underneath the Sulzberger ice shelf. The resulting tidal constituent is compared with a contemporary regional tide model (CATS2008a) and a global tide model (TPXO7.1). The InSAR estimated tidal amplitude agrees well with both models with RMS (root-mean-square) differences of < 2.2 cm and the phase estimate corroborating both tide models to within $8^{\circ}$. We conclude that fine spatial scale (~200 m) Antarctic ice shelf ocean tide determination is feasible for dominant constituents using C-band ERS-1/2 tandem mission InSAR.