• Title/Summary/Keyword: ICAM-1 expression

Search Result 178, Processing Time 0.027 seconds

Nafamostat Mesilate Inhibits TNF-${\alpha}$-Induced Vascular Endothelial Cell Dysfunction by Inhibiting Reactive Oxygen Species Production

  • Kang, Min-Woong;Song, Hee-Jung;Kang, Shin Kwang;Kim, Yonghwan;Jung, Saet-Byel;Jee, Sungju;Moon, Jae Young;Suh, Kwang-Sun;Lee, Sang Do;Jeon, Byeong Hwa;Kim, Cuk-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.229-234
    • /
    • 2015
  • Nafamostat mesilate (NM) is a serine protease inhibitor with anticoagulant and anti-inflammatory effects. NM has been used in Asia for anticoagulation during extracorporeal circulation in patients undergoing continuous renal replacement therapy and extra corporeal membrane oxygenation. Oxidative stress is an independent risk factor for atherosclerotic vascular disease and is associated with vascular endothelial function. We investigated whether NM could inhibit endothelial dysfunction induced by tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$ ). Human umbilical vein endothelial cells (HUVECs) were treated with TNF-${\alpha}$ for 24 h. The effects of NM on monocyte adhesion, vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) protein expression, p38 mitogenactivated protein kinase (MAPK) activation, and intracellular superoxide production were then examined. NM ($0.01{\sim}100{\mu}g/mL$) did not affect HUVEC viability; however, it inhibited the increases in reactive oxygen species (ROS) production and p66shc expression elicited by TNF-${\alpha}$ (3 ng/mL), and it dose dependently prevented the TNF-${\alpha}$ -induced upregulation of endothelial VCAM-1 and ICAM-1. In addition, it mitigated TNF-${\alpha}$ -induced p38 MAPK phosphorylation and the adhesion of U937 monocytes. These data suggest that NM mitigates TNF-${\alpha}$ -induced monocyte adhesion and the expression of endothelial cell adhesion molecules, and that the anti-adhesive effect of NM is mediated through the inhibition of p66shc, ROS production, and p38 MAPK activation.

Development of aortic endothelial cells to express CD37 and CD73 isolated from alpha 1,3-galactosyltransferase knock-out and MCP expressing pig (alpha 1,3-galactosyltransferase 기능 제거 및 MCP 발현 형질전환 돼지의 대동맥 혈관내피세포에 CD37/CD73 발현 세포주 개발)

  • No, Jin-Gu;Byun, Sung-June;Yang, Hyeon;Ock, Sun A;Woo, Jae-Seok;Lee, Hwi-Cheul;Hwang, In-sul;Kim, Ji-Youn;Park, Sang Hyoun;Lee, Joo Young;Oh, Keon Bong
    • Journal of Embryo Transfer
    • /
    • v.33 no.3
    • /
    • pp.129-137
    • /
    • 2018
  • Acute vascular rejection has been known as a main barrier occurring in a xenograted tissue of alpha 1,3-galactosyltransferase knock-out (GalT KO) pig into a non-human primate (NHP). Adenosine which is a final metabolite following sequential hydrolysis of nucleotide by ecto-nucleotidases such as CD39 and CD73, act as a regulator of coagulation, and inflammation. Thus xenotransplantation of CD39 and CD73 expressing pig under the GalT KO background could lead to enhanced survival of recipient NHP. We constructed a human CD39 and CD73 expression cassette designed for endothelial cell-specific expression using porcine Icam2 promoter (pIcam2-hCD39/hCD73). We performed isolation of endothelial cells (pAEC) from aorta of 4 week-old GalT KO and membrane cofactor protein expressing pig ($GalT^{-MCP/-MCP}$). We were able to verify that isolated cells were endothelial-like cells using immunofluorescence staining analysis with von Willebrand factor antibody, which is well known as an endothelial maker, and tubal formation assay. To find optimal condition for efficient transfection into pAEC, we performed transfection with GFP expression vector using four programs of nucleofection, M-003, U-023, W-023 and Y-022. We were able find that the program W-023 was optimal for pAEC with regard to viability and transfection efficiency by flow cytometry and fluorescent microscopy analyses. Finally, we were able to obtain $GalT^{-MCP/-MCP}/CD39/CD73$ pAEC expressing CD39 and CD73 at levels of 33.3% and 26.8%, respectively. We suggested that pACE isolated from $GalT^{-MCP/-MCP}$ pig might be provided as a basic resource to understand biochemical and molecular mechanisms of the rejections and as an alternative donor cells to generate $GalT^{-MCP/-MCP}/CD39/CD73$ pig expressing CD39 and CD73 at endothelial cells.

A Role of Mitogen Activated Protein Kinases and Inflammatory Responses in Gender Differences in Kidney Ischemia Injury

  • Park, Kwon-Moo;Han, Ho-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.3
    • /
    • pp.155-160
    • /
    • 2002
  • It is not known whether gender differences play a role in susceptibility to ischemic acute renal failure. Thus, we examined if there were any differences in susceptibility between male and female mice to kidney ischemic injury, and if so, whether it is due to differences in mitogen activated protein kinases (MAPKs) or inflammatory responses to ischemia. Female mice were protected against kidney ischemia when compared with males. Thirty minutes of bilateral ischemia resulted in marked functional and morphological damages in males, but not in females. The ischemia-induced phosphorylation of c-jun N-terminal stress-activated protein kinases (JNKs) was higher in males than in females. Phosphorylation of extracellular signal-regulated kinases (ERKs) was lower in males than in females. Post- ischemia medullary infiltration of RAW 264.7 cell, a monocyte-macrophage cell, and intercellular adhesion molecule-1 (ICAM-1) were greater in males than in females. In conclusion, males were much more susceptible to ischemia than females. The enhanced propensity to ischemic injury in males was correlated with greater activation of JNKs, greater expression of ICAM-1, and greater trapping of leukocytes in the medulla.

Allicin reduces expression of Intercellular Adhesion Molecule-1 (ICAM-1) in gamma-irradiated endothelial cells: Involvement of p38 MAP kinase signalling pathway.

  • Son, Eun-Hwa;Mo, Sung-Ji;Cho, Seong-Jun;Yang, Kwang-Hee;Rhee, Dong-Kwon;Pyo, Suhk-Neung
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.307.1-307.1
    • /
    • 2002
  • Inflammation is a frequent radiation-induced following therapeutic irradiation. Since the upregulation of adhesion molecules on endothelial cell surface has been known to be associated with inflammation. interfering with the expression of adhesion molecules is an important therapeutic target. We examined the effect of allicin. a major component of garlic. on the induction of intercellular adhesion molecule-1 (lCAM-1) by gamma-irradiation and the mechanisms of its effect in gamma-irradiated human umbilical vein endothelial cells (HUVECs). (omitted)

  • PDF

The Biological Effects of Bovine Lactoferrin on Inflammatory Cytokine Expression in the PMA Stimulated Cells (PMA로 자극되어진 세포에서 염증 Cytokine 발현에 미치는 Bovine Lactoferrin의 생물활성 영향)

  • Chung, Sung-Hee;Kang, Ho-Bum;Kim, Jae-Wha;Yoon, Sung-Sik;Nam, Myoung-Soo
    • Food Science of Animal Resources
    • /
    • v.32 no.3
    • /
    • pp.364-368
    • /
    • 2012
  • Bovine lactoferrin is well known as biological activator in defense mechanism related some cells. In this study, we was investigated about the immune modulator as a role of lactoferrin through the transcriptional regulation of genes associated with hypersensitivity such as allergy, athma and inflammatory disease. Effects of inflammatory reaction of bovine lactoferrin was carried out by RT-PCR analysis from isolated total RNA treated with lactoferrin 0, 10, 50, 100, 500 ${\mu}g/mL$ and PMA 100 ng/mL. The expression of the TYROBP, PITPNA, IL-10, SLP1, DC-stamp and ICAM-1 mRNA were increased by synergy effect of bovine lactoferrin and PMA. The results of RT-PCR showed that bovine lactoferrin and PMA had an effect of immune modulator by enhancement of TYROBP, PITPNA, SLP1, DC-stamp, IL-10 and ICAM-1 gene transcription in U937, Mutz-3 and NK92 cells, respectively. Bovine lactoferrin showed a potential of biological function which could be used for industrial applications as a material of food and pharmaceutical.

NADPH Oxidase 4-mediated Alveolar Macrophage Recruitment to Lung Attenuates Neutrophilic Inflammation in Staphylococcus aureus Infection

  • Seunghan Han;Sungmin Moon;Youn Wook Chung;Ji-Hwan Ryu
    • IMMUNE NETWORK
    • /
    • v.23 no.5
    • /
    • pp.42.1-42.21
    • /
    • 2023
  • When the lungs are infected with bacteria, alveolar macrophages (AMs) are recruited to the site and play a crucial role in protecting the host by reducing excessive lung inflammation. However, the regulatory mechanisms that trigger the recruitment of AMs to lung alveoli during an infection are still not fully understood. In this study, we identified a critical role for NADPH oxidase 4 (NOX4) in the recruitment of AMs during Staphylococcus aureus lung infection. We found that NOX4 knockout (KO) mice showed decreased recruitment of AMs and increased lung neutrophils and injury in response to S. aureus infection compared to wildtype (WT) mice. Interestingly, the burden of S. aureus in the lungs was not different between NOX4 KO and WT mice. Furthermore, we observed that depletion of AMs in WT mice during S. aureus infection increased the number of neutrophils and lung injury to a similar level as that observed in NOX4 KO mice. Additionally, we found that expression of intercellular adhesion molecule-1 (ICAM1) in NOX4 KO mice-derived lung endothelial cells was lower than that in WT mice-derived endothelial cells. Therefore, we conclude that NOX4 plays a crucial role in inducing the recruitment of AMs by controlling ICAM1 expression in lung endothelial cells, which is responsible for resolving lung inflammation during acute S. aureus infection.

Changes in Immunogenicity of Preserved Aortic Allograft (보존된 동종동맥편 조직의 면역성 변화에 관한 연구)

  • 전예지;박영훈;강영선;최희숙;임창영
    • Journal of Chest Surgery
    • /
    • v.29 no.11
    • /
    • pp.1173-1181
    • /
    • 1996
  • The causes of degenerative changes in allograft cardiac valves are not well known to this day. Today's preserved allografts possess highly viable endothelial cells and degeneration of allografts can be facilitated by immune reaction which may be mediated by these viable cells. To test the antigenicity of endothelial cells, pieces from aortic wall were obtained from fresh and cryo-preserved rat allograft. Timings of sampling were prior to sterilization, after sterilization, after 1, 2, 7, 14 days of fresh preservation and cryopreservation. Endothelial cells were tested by immunohistochemical methods using monoclonal antibodies to MHC class I(MRC OX-18), class II(MRC OX-6) and ICAM-1 antigens. After transplantation of each group of aortic allograft at the subcutaneous layers of rats, population of CD4$^{+}$ T cell and CD8$^{+}$ T cell were analyzed with monoclonal antibodies after 1, 2, 3, 4, 6 and 8 weeks. MHC class I expression was 23.95% before preservation and increased to 35.53~48.08% after preservation(p=0.0183). MHC Class II expression was 9.72% before preservation and 10.13~13.39% after preservation(P=0.1599). ICAM-1 expression was 15.02% before preservation and increased to 19.85~35.33% after preservation(P=0.001). The proportion of CD4$^{+}$ T-cell was 42.13% before transplantation. And this was 49.23~36.8% after transplantation in No treat group (p=0.955), decreased to 29.56~32.80% in other group(p=0.0001~0.008). In all the groups, the proportion of CD8$^{+}$ T-cell increased from 25.57% before transplantation to 42.32~58.92% after transplantation(p=0.000l~0.0002). The CD4$^{+}$/CD8$^{+}$ ratio decreased from 1.22~2.28 at first week to 0.47~0.95 at eighth week(p=0.0001). The results revealed that the expression of MHC class I and ICAM-1 in aortic allograft endothelium were increased but that of MHC class II were not changed, despite the different method of preservation. During 8 weeks after transplantation of aortic allograft, the subpopulations of CD4$^{+}$ T cell were not changed or only slightly decreased but those of CD8$^{+}$ T cell were progressively increased.ely increased.

  • PDF

Immunochemical study on the Role of ${\beta}_2$ Integrin in the Activation of Monocytes Upon Direct Contact with T Lymphocytes (T 세포 접촉에 의한 단핵구 활성화에서 ${\beta}_2$ Integrin의 역할에 관한 면역화학적 연구)

  • Lee, Suck-Cho;Lee, Ho;Oh, Kwi-Ok;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.2
    • /
    • pp.333-350
    • /
    • 1999
  • The modulation of leukocyte cell surface adhesion molecules may influence the development of cellular events that determine the course of the inflammatory process. Direct interaction between activated T cells and monocytes resulted in a large production of $IL-1{\beta}$ by monocytes. In this reactions, adhesion molecules play an important part, yet the role of them in Tmonocytes interaction remain unclear. This study was undertaken in an effort to elucidate, 1) the influence of 1.25(OH)$_2D_3-induced$ differentiation on the monocyte responsiveness to direct contact with T lymphocytes, and 2) the role of adhesion molecules on the T-monocyte direct interaction. Initially, I observed that direct contact of monocyte cell line THP-1 with stimulated fixed T cell line HuT78 markedly induces IL-1${\beta}$ production by THP-1. $IL-1{\beta}$ production was higher when THP-1 had been previously exposed to 1.25(OH)$_2D_3$ as compared to control, with ${\alpha}$- 1.25(OH)$_2D_3$ dose-dependent and exposure time-dependent manner. It was shown that 1.25(OH)$_2D_3$ also increased the expression of ${\beta}_2$ integrin adhesion receptor Mac-1(CD11b/CD18) dose- and timedependently, but did not increase the expression of human leukocyte antigen- D(HLA-D) and intercellular adhesion molecule-1(ICAM-1). The $IL-1{\beta}$ producing activity of THP-1 cells correlated well with the ability to induce the Mac-1 expression on THP-1 surface. Monoclonal antibody raised against relevant cell surface glycoproteins on THP-1 were tested for their ability to block the response of THP-1 to T cells. Antibody to Mac-1 only partially blocked $IL-1{\beta}$ production by THP-1, whereas antibodies to ICAM-1 and HLA-D did not. These data indicate that regulation of Mac-1 expression on THP-1 cells can alter the responsiveness of these cells to contact by activated T cells, however other unknown structures on the THP-1 cells may be involved in this process also.

  • PDF

Expression of Hepatitis B Virus X Protein in Hepatocytes Suppresses CD8+ T Cell Activity

  • Lee, Mi Jin;Jin, Young-hee;Kim, Kyongmin;Choi, Yangkyu;Kim, Hyoung-Chin;Park, Sun
    • IMMUNE NETWORK
    • /
    • v.10 no.4
    • /
    • pp.126-134
    • /
    • 2010
  • Background: $CD8^+$ T cells contribute to the clearance of Hepatitis B virus (HBV) infection and an insufficient $CD8^+$ T cell response may be one of the major factors leading to chronic HBV infection. Since the HBx antigen of HBV can up-regulate cellular expression of several immunomodulatory molecules, we hypothesized that HBx expression in hepatocytes might affect $CD8^+$ T cell activity. Methods: We analyzed the activation and apoptosis of $CD8^+$ T cells co-cultured with primary hepatocytes rendered capable of expressing HBx by recombinant baculovirus infection. Results: Expression of HBx in hepatocytes induced low production of $interferon-{\gamma}$ and apoptosis of CD8+ T cells, with no effect on CD8 T cell proliferation. However, transcriptional levels of H-2K, ICAM-1 and PD-1 ligand did not correlate with HBx expression in hepatocytes. Conclusion: Our results suggest that HBx may inhibit $CD8^+$ T cell response by regulation of $interferon-{\gamma}$ production and apoptosis.

The comparative study of anti-allergic and anti-inflammatory effects by fermented red ginseng and red ginseng (홍삼과 발효홍삼의 항염증 작용 및 항알러지 효과 비교)

  • Park, Hye-Jin;Jung, Da-Hye;Joo, Hae-Mi;Kang, Nam-Sung;Jang, Seon-A;Lee, Jae-Geun;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.23 no.5
    • /
    • pp.415-422
    • /
    • 2010
  • Red ginseng(RG, steamed and dried root of Panax ginseng C. A. Meyer, family Araliaceae) and fermented red ginseng(FRG, fermented red ginseng by yeast and lactic acid bacteria) are known to show different pharmacological effects by changed composition of saponins through fermentation. We examined the effects of RG and FRG on $\beta$-hexosaminidase secretion, ICAM-1 expression, the mitogen-induced proliferation of lymphocyte from mice in ex vivo systems and HaCaT cell(keratinocyte) proliferation to compare the anti-allergic and anti-inflammatory effects between both groups. RG groups showed inhibition of $\beta$-hexosaminidase secretion and ICAM-1 expression at $1{\mu}g/ml$, $10{\mu}g/ml$ and the same effects were observed at all concentrations in FRG groups. In our study, RG increased LPS-induced B cell proliferation at $1{\mu}g/ml$ and ConA-induced B cell proliferation at $100\;{\mu}g/ml$ but FRG decreased LPS- and ConA-induced lymphocytes at $100\;{\mu}g/ml$. We showed that FRG increased the proliferation of HaCaT at 1, $10{\mu}g/ml$ but not by RG. These findings suggest that RG and FRG might have anti-inflammatory and anti-allergic effects, which can be needed to proper clinical concentration to applied to various allergic diseases and inflammation.