• Title/Summary/Keyword: IBFD

Search Result 6, Processing Time 0.016 seconds

Performance Evaluation and Analysis of MIMO-IBFD Systems (MIMO-IBFD 시스템의 성능 평가 및 분석)

  • An, Changyoung;Kung, Kyung-Lok;Kim, Byeongjae;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.531-538
    • /
    • 2016
  • In this paper, we have proposed MIMO-IBFD system that can transmit and receive multiple data stream at the same time in the single band, and analyze the system. We have confirmed that MIMO-IBFD system requires multiple RF cancellation and multiple Digital cancellation techniques. In simulation, we have analyzed characteristic of received signal on MIMO-IBFD system, and evaluate system performance of conventional $2{\times}2$ MIMO system and MIMO-IBFD system. As simulation results, we have confirmed that MIMO-IBFD system can transmit and receive multiple data stream at the same time in the single band by using multiple RF and digital cancellation techniques. Additionally, we have confirmed that BER performance of $2{\times}2$ MIMO-IBFD system with low-level QAM modulation is similar to performance of $2{\times}2$ MIMO system, and BER performance of $2{\times}2$ MIMO-IBFD system with high-level QAM modulation is degraded in comparison with $2{\times}2$ MIMO system with high-level QAM modulation. We can confirm that MIMO-IBFD system requires high level self-interference cancellation technique in order to use high level modulation.

Performance Evaluation and Signal Analysis of In-Band Full-Duplex System with ADC Effect (ADC 효과를 고려한 In-Band Full-Duplex 시스템의 신호 분석 및 성능 평가)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2131-2141
    • /
    • 2015
  • In this paper, we analyze ADC effect in IBFD system. Also, we design IBFD system with ADC effect, and evaluate BER performance of the system according to power of self-interference. Firstly, we describe a fundamentals of general IBFD system. And then we calculate and analyze characteristics of desired signal before and after ADC when residual self-interference is added to desired signal after RF cancellation. In this calculation, we have confirm some conditions for selection of # of ADC bit. Finally, we design IBFD system with ADC effect, and evaluate BER performance of the system by using Simulink simulation tool. As simulation results, we have confirmed that when power of residual self-interference is high before ADC, IBFD system must use high-bit ADC for decreasing quantization step. Also, we have confirmed that quantization step should be lower than one-third of amplitude of desired signal for effective communication with good performance.

Evaluation of the Image Backtrack-Based Fast Direct Mode Decision Algorithm

  • Choi, Yungho;Park, Neungsoo
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.685-692
    • /
    • 2012
  • B frame bi-directional predictions and the DIRECT mode coding of the H.264 video compression standard necessitate a complex mode decision process, resulting in a long computation time. To make H.264 feasible, this paper proposes an image backtrack-based fast (IBFD) algorithm and evaluates the performances of two promising fast algorithms (i.e., AFDM and IBFD). Evaluation results show that an image backtrack-based fast (IBFD) algorithm can determine DIRECT mode macroblocks with 13% higher accuracy, as compared with the AFDM. Furthermore, IBFD is shown to reduce the motion estimation time of B frames by up to 23% with a negligible quality degradation.

A Three-way Handshaking Access Mechanism for Point to Multipoint In-band Full-duplex Wireless Networks

  • Zuo, Haiwei;Sun, Yanjing;Lin, Changlin;Li, Song;Xu, Hongli;Tan, Zefu;Wang, Yanfen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3131-3149
    • /
    • 2016
  • In-band Full-duplex (IBFD) wireless communication allows improved throughput for wireless networks. The current Half-duplex (HD) medium access mechanism Request to Send/Clear to Send (RTS/CTS) has been directly applied to IBFD wireless networks. However, this is only able to support a symmetric dual link, and does not provide the full advantages of IBFD. To increase network throughput in a superior way to the HD mechanism, a novel three-way handshaking access mechanism RTS/SRTS (Second Request to Send)/CTS is proposed for point to multipoint (PMP) IBFD wireless networks, which can support both symmetric dual link and asymmetric dual link communication. In this approach, IBFD wireless communication only requires one channel access for two-way simultaneous packet transmissions. We first describe the RTS/SRTS/CTS mechanism and the symmetric/asymmetric dual link transmission procedure and then provide a theoretical analysis of network throughput and delay using a Markov model. Using simulations, we demonstrate that the RTS/SRTS/CTS access mechanism shows improved performance relative to that of the RTS/CTS HD access mechanism.

A Medium Access Control Mechanism for Distributed In-band Full-Duplex Wireless Networks

  • Zuo, Haiwei;Sun, Yanjing;Li, Song;Ni, Qiang;Wang, Xiaolin;Zhang, Xiaoguang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5338-5359
    • /
    • 2017
  • In-band full-duplex (IBFD) wireless communication supports symmetric dual transmission between two nodes and asymmetric dual transmission among three nodes, which allows improved throughput for distributed IBFD wireless networks. However, inter-node interference (INI) can affect desired packet reception in the downlink of three-node topology. The current Half-duplex (HD) medium access control (MAC) mechanism RTS/CTS is unable to establish an asymmetric dual link and consequently to suppress INI. In this paper, we propose a medium access control mechanism for use in distributed IBFD wireless networks, FD-DMAC (Full-Duplex Distributed MAC). In this approach, communication nodes only require single channel access to establish symmetric or asymmetric dual link, and we fully consider the two transmission modes of asymmetric dual link. Through FD-DMAC medium access, the neighbors of communication nodes can clearly know network transmission status, which will provide other opportunities of asymmetric IBFD dual communication and solve hidden node problem. Additionally, we leverage FD-DMAC to transmit received power information. This approach can assist communication nodes to adjust transmit powers and suppress INI. Finally, we give a theoretical analysis of network performance using a discrete-time Markov model. The numerical results show that FD-DMAC achieves a significant improvement over RTS/CTS in terms of throughput and delay.

Design and Performance Evaluation of In-Band Full-Duplex System Based on Direct Conversion Receiver (직접변환 수신기 구조에서 In-Band Full-Duplex 시스템 설계와 성능 특성 평가)

  • Keum, Hong-Sik;An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1258-1268
    • /
    • 2014
  • In this paper, we propose and design IBFD system based on DCR. And then, we analyze effect of DC offset by self-interference in the proposed system. Also, we evaluate BER performance of the proposed system according to DC offset. As a result of the simulation, we can confirm that when the self-interference is not completely cancelled by the RF cancellation, linearity of desired signal and self-interference is distorted by DC offset. Also, in the proposed system using m-QAM modulation, DC offsets of multi-level are caused by self-interference with m-QAM modulation. As a result, constellations of desired signal and self-interference are greatly distorted. In contrast, in the proposed system using m-PSK modulation, DC offset of single level is caused by self-interference with m-PSK modulation. In this condition, we confirm that distortion of constellations of desired signal and self-interference is less than when using m-QAM modulation. That is, we can confirm that m-PSK modulation is effective than m-QAM modulation in DCR based IBFD system. Also, we can confirm that it is important to cancel self-interference as much as possible in RF-stage.