• Title/Summary/Keyword: IAP family

Search Result 41, Processing Time 0.027 seconds

Induction of Apoptosis in Human Colon Carcinoma HCT116 Cells Using a Water Extract of Lepidium virginicum L. (콩다닥냉이 추출물에 의한 HCT116 대장암세포의 사멸 유도에 관한 연구)

  • Chae, Yang-Hui;Shin, Dong-Yeok;Park, Cheol;Lee, Yong-Tae;Moon, Sung-Gi;Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.649-659
    • /
    • 2011
  • To examine the anti-cancer effects of Lepidium virginicum L., the anti-proliferative and pro-apoptotic effects of a water extract of L. virginicum leaves (WELVL) and of L. virginicum roots (WELVR) were investigated in HCT116 human colon carcinoma cells. The treatment of HCT116 cells with WELVL and WELVR resulted in the inhibition of growth and morphological changes in a concentration-dependent manner by inducing apoptosis. The growth inhibition and apoptosis induction by WELVR was stronger than that of WELVL thus, we determined that WELVR was the more optimal extract for this study. The increased apoptotic events in HCT116 cells caused by WELVR were associated with an up-regulation of Fas ligand, Bax, and Bad expression, a down-regulation of Bcl-2, Bcl-$_XL$, and Bid expression, and a decrease in the mitochondrial membrane potential (MMP, ${\Delta}{\psi}m$). WELVR treatment induced the proteolytic activation of caspase-3, -8, and -9, and the degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, and phospholipase C-${\gamma}1$ (PLC-${\gamma}1$). In addition, apoptotic cell death induced by WELVR was correlated with a down-regulation of inhibitors of the apoptosis protein (IAP) family, such as the X-linked inhibitor of apoptosis protein (XIAP), cIAP-1, and cIAP-2. These findings suggest that the WELVR-induced inhibition of cell proliferation is associated with the induction of apoptotic cell death. WELVR may be a potential chemotherapeutic agent for the control of HCT116 human colon carcinoma cells.

Survivin, Possible Marker and Prognostic Factor in Oral Squamous Cell Carcinomas

  • Kim, Young-Youn;Kim, Myung-Jin;Choi, Keum-Kang;Hong, Seong-Doo;Myoung, Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.1
    • /
    • pp.71-82
    • /
    • 2008
  • Survivin is a member of the inhibitors of apoptosis (IAP) family that have been known to inhibit activated caspases in apoptosis. In contrast to most IAP family members, survivin mRNA is expressed during fetal development, is not found in normal adult tissues and is overexpressed again in the cancer. Though survivin expression has been documented in most human cancers, little is known about its expression in OSCC and its potential value as a predictor of cancer survival. The purpose of this study was to investigate survivin expression in OSCC and to evaluate its value as a prognostic marker. We evaluated survivin expressions in cancer lines and OSCC samples and investigated the relationships between survivin expressions and clini-co-pathological parameters including stage, differentiation, proliferation, lymph node metastasis, blood vessel density, and gelatinolytic activity. With immunohistochemistry, we analyzed survivin expression in 38 OSCCs. Patients' clinico-pathological parameters and their survival rate were analyzed to reveal their correlations with Survivin expressions. We cultured oral cancer cell lines and evaluated the correlation between gelatinolytic activities and survivin expressions of them. Survivin protein was observed both in nuclei and cytoplasm of tumor specimens while little or not observed in normal gingival mucosal tissues. Additionally, survivin expressions were correlated with lymph node metastasis, tumor proliferation and survival rate. Survivin expression was observed in 100% of 38 samples of OSCC and its expression levels are statistically associated with the proliferative activity of the tumors, lymph node metastasis and the survival of the patients. Based on these results, survivin is commonly expressed in OSCC and may thus provide valuable prognostic information related with lymph node metastasis, proliferation and survival rate as well as a potential therapeutic target in OSCC.

Anti-cancer Potentials of Rhus verniciflua Stokes, Ulmus davidiana var. japonica Nakai and Arsenium Sublimatum in Human Gastric Cancer AGS Cells (AGS 인체위암세포에서 건칠, 유근피 및 신석 추출물의 항암 활성 비교 연구)

  • Baek, Ilsung;Im, Lyeng-Hae;Park, Cheol;Cho, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.849-860
    • /
    • 2015
  • The anti-cancer activities of Rhus verniciflua Stokes (GC), Ulmus davidiana var. japonica Nakai (UGP) and arsenium sublimatum (SS) extracts, which have been used Oriental medicine therapy for various diseases, were investigated. The treatment of GC, UGP and SS alone, and combined treatment with GC, UGP and SS did not affect the cell viability in the mouse normal cell lines (RAW 264.7 macrophages and C2C12 myoblasts). However, co-treatment with GC, UGP and SS markedly induces apoptosis in human gastric cancer AGS cells, but not in other various cancer cell lines (human lung cancer A549, colon cancer HCT116, liver cancer Hep3B and bladder T24 cells) as evidenced by formation of apoptotic bodies, chromatin condensation, and accumulation of annexin-V positive cells. Co-treatment with GC, UGP and SS effectively induced the expression levels of Fas and Fas ligand, and inhibited the levels IAP family proteins such as XIAP, cIAP-1 and survivin, and anti-apoptotic Bcl-xL proteins compared with treatment with either agent alone. Combined treatment also significantly induced the loss of mitochondrial membrane potential, which was associated with the activation of caspases (-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase. However, the cytotoxic effects induced by co-treatment with GC, UGP and SS were significantly attenuated by pan-caspases inhibitor, z-VAD-fmk, indicating an important role for caspases. These results indicated that the caspases were key regulators of apoptosis in response to co-treatment of GC, UGP and SS in human gastric cancer AGS cells and further studies will be needed to identify the active compounds.

Apoptotic Cell Death of Human Leukemia U937 Cells by Essential Oil purified from Schisandrae Semen (오미자 종자 정유에 의한 인체백혈병 U937 세포의 apoptosis 유도)

  • Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.249-255
    • /
    • 2015
  • Schisandrae fructus [Schizandra chinensis (Turcz.) Baillon] is a medicinal herb widely used for treating various inflammatory and immune diseases in East Asian countries. The Schisandrae Semen essential oil (SSeo) from this plant has pharmacological activities, including antioxidant, antimicrobial, and antitumoral activities. Nevertheless, the biological activities and underlying molecular mechanisms of the potential anti-cancer effects of this oil remain unclear. In the present study, we investigated the potential inhibition of apoptosis signaling pathways by SSeo in human leukemia U937 cells and evaluated the underlying molecular mechanism. Exposure to SSeo resulted in a concentration-dependent growth inhibition due to apoptosis, which was verified by DNA fragmentation, the presence of apoptotic bodies, and an increase in the sub-G1 ratio. Induction of apoptotic cell death by SSeo was correlated with the down-regulation of members of the inhibitor of apoptosis protein (IAP) family (including X-linked inhibitor of apoptosis protein (XIAP), cIAP-1, and surviving) and anti-apoptotic Bcl-2, and with up-regulation of death receptor (DR) 4 and DR5, depending on dosage. SSeo treatment also induced Bid truncation, mitochondrial dysfunction, proteolytic activation of caspase-3, -8 and -9, and concomitant degradation of activated caspase-3 target proteins such as poly (ADP-ribose) polymerase. Taken together, these findings suggest that SSeo may be a potential chemotherapeutic agent for use in the control of human leukemia cells. Further studies are needed to identify its active compounds.

Inhibitors of apoptosis: expression and regulation in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in pigs

  • Yoo, Inkyu;Jung, Wonchul;Lee, Soohyung;Cheon, Yugyeong;Ka, Hakhyun
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.533-543
    • /
    • 2022
  • Objective: Caspase-mediated apoptosis plays a crucial role in the regulation of endometrial and placental function in females. Caspase activity is tightly controlled by members of the inhibitors of apoptosis proteins (IAPs) family. However, the expression and regulation of IAPs at the maternal-conceptus interface has not been studied in pigs. Therefore, we determined the expression of IAP family members baculovirus IAP repeat-containing 1 (BIRC1) to BIRC6 at the maternal-conceptus interface in pigs. Methods: We obtained endometrial tissues from pigs at various stages of the estrous cycle and pregnancy, conceptus tissues during early pregnancy, and chorioallantoic tissues during mid- to late pregnancy and analyzed the expression of IAPs. Furthermore, we determined the effects of the steroid hormones estradiol-17β (E2) and progesterone on the expression of IAPs in endometrial explant tissue cultures. Results: During the estrous cycle, BIRC2 and BIRC5 expression varied cyclically, and during pregnancy, endometrial BIRC1, BIRC2, BIRC3, BIRC4, and BIRC5 expression varied in a stage-specific manner. Conceptus and chorioallantoic tissues also expressed IAPs during pregnancy. The BIRC2 and BIR3 mRNAs were localized to luminal epithelial cells, and BIRC4 proteins to glandular epithelial cells in the endometrium. Exposure of endometrial tissues to E2 increased the expression of BIRC6, while progesterone increased the expression of BIRC1, BIRC4, and BIRC6 in a dose-dependent manner. Conclusion: These results indicated that IAPs were expressed in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in a stage-specific manner. In addition, steroid hormones were found to be responsible for the expression of some IAPs in pigs. Together, the results suggested that IAPs may play important roles in endometrial and placental functions by regulating caspase action and apoptosis at the maternal-conceptus interface.

Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Mak ino in Human Leuk emia U937 Cells (인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도)

  • Eun Jung Ahn;Chul Hwan Kim;Jin-Woo Jeong;Buyng Su Hwang;Min-Jeong Seo;Kyung-Min Choi;Su Young Shin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.77-77
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer mechanisms are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins (XIAP, cIAP-1, survivin), depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.

  • PDF

Endogenous Nitric Oxide Strengthens Doxorubicin-induced Apoptosis in Human Colorectal Cell Lines (Doxorubicin에 의한 내인성 산화질소가 인간 대장암 세포주에서의 세포사멸에 미치는 효과)

  • Im, Soon Jae;Kim, Ji Hye;Kim, Min Young
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1137-1143
    • /
    • 2014
  • Doxorubicin is a general chemotherapy drug widely used for a number of cancers. However, the correlation between endogenous nitric oxide ($NO^{\bullet}$) levels and chemoresistance to doxorubicin remains unclear. In this study, we investigated the effect of endogenous $NO^{\bullet}$ on the anticancer activity of doxorubicin in human colon cancer cell lines HCT116 and HT29 with different p53 status. The cells were treated with either doxorubicin alone or in combination with the $NO^{\bullet}$ synthase (NOS) inhibitor $N^G$-monomethyl-L-arginine (NMA). Doxorubicin differentially inhibited the growth of both the HCT116 (p53-WT) and HT29 (p53-MUT) cells, which was mitigated by cotreatment with NMA. Further studies revealed that inhibition of endogenous $NO^{\bullet}$ mitigated doxorubicin-induced apoptosis in the HCT116 and HT29 cells, as evidenced by apoptotic DNA fragmentation and the sub-G1 peak of apoptotic markers. Apoptosis was delayed in the HT29 cells, and its magnitude was greatly reduced, underscoring the importance of the modulation of p53 in the response. RT-PCR analysis revealed that doxorubicin down-regulated levels of inhibitors of the apoptosis family (cellular IAP-1 and-2). Collectively, these data show that induction of apoptosis by doxorubicin in human colon cancer cells is possibly related to modulation of endogenous $NO^{\bullet}$, the expression of the IAP family of genes, and the status of p53. The underlying mechanisms may represent potential targets for adjuvant strategies to improve the efficacy of chemotherapy for colon cancer.

Ani-survivin DNAzymes Inhibit Cell Proliferation and Migration in Breast Cancer Cell Line MCF-7

  • Zhang, Min;Sun, Yi-Fu;Luo, Su
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6233-6237
    • /
    • 2012
  • Survivin, a new member of the inhibitor of apoptosis protein (IAP) family, both inhibits apoptosis and regulates the cell cycle. It is overexpressed in breast tumor tissues. In this study, we designed two survivin specific DNAzymes (DRz1 and DRz2) targeting survivin mRNA. The results showed that DRz1 could decrease the expression of survivin by nearly 60%. Furthermore, DRz1 significantly inhibited cell proliferation, induced apoptosis and inhibited migration in MCF-7 cells. In addition, down-regulation of survivin expression was associated with increased caspase-3 and -9 activities in MCF-7 cells after 24 h transfection. In our experiments, the efficacy of DRz1 to influence survivin levels and associated effects were better than DRz2. Survivin-DRz1 might have anti-tumorigenic activity and may potentially provide the basis for a novel therapeutic intervention in breast cancer treatment.

EFFECT OF CURCUMIN AND RESVERATROL ON THE CELL CYCLE REGULATION, APOPTOSIS AND INHIBITION OF METASTASIS RELATED PROTEINS IN HN-4 CELLS (Curcumin과 resveratrol에 의한 두경부암 유래의 HN-4 세포의 세포주기, 세포사 및 전이관련 단백질의 발현 조절)

  • Kim, Sa-Yub;Lee, Sang-Han;Kwon, Taeg-Kyu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.5
    • /
    • pp.272-281
    • /
    • 2003
  • Nontraditional or alternative medicine is becoming an increasingly attractive approach for the treatment of various inflammatory disorders and cancers. Curcumin is the major constitute of turmoric powder extracted from the rhizomes of the plant Curcuma longa. Resveratrol is a phytoalexin present in grapes and a variety of medicinal plants. In this report, We investigated the effect of curcumin and resveratrol on regulatory protein of cell cycle, induction of apoptosis and MMP activity. Treatment with 75 M curcumin for 24 hrs produced morphological changing in HN-4 cells. Curcumin and resveratrol inhibited the cellular growth in HN-4 cells. Inhibition of cell growth was associated with down-regulation of cell cycle regulatory proteins. Curcumin-induced caspase-3 activation and Bax degradation were dose-dependent with a maximal effect at a concentration of 100 M. The elevated caspase-3 activity in curcumin treated HN-4 cells are correlated with down-regulation of survivin and cIAP1, but not cIAP2. Curcumin induced a dose-dependent increase of cytochrome c in the cytosol. Curcumin induced-apoptosis was mediated through the release of cytochrome c. In addition, curcumin-induced apoptosis was caused by the generation of reactive oxygen species, which was prevented by antioxidant N-acetyl-cysteine (NAC). Cotreatment with NAC markedly prevented cytochrome c release, Bax cleavage and cell death. Also resveratrol-induced apoptosis was preceded by down-regulation of the anti-apoptotic Bcl-2, cIAP1, and caspase-3 activity. However, resveratrol-induced apoptosis was not prevented by antioxidant NAC. In addition, HN-4 cells release basal levels of MMP2 when cultured in serum-free medium. Treatment of the cells with various concentrations of PMA for 24 hr induced the expression and secretion of latent MMP9 as determined by gelatin zymography. HN-4 cells were treated with various concentrations of curcumin and resveratrol in the presence of 75 nM PMA, and MMP2 and 9 activities were inhibited by curcumin and resveratrol. These findings have implications for developing curcumin-based anticancer and anti-inflammation therapies.

Anticancer Effect of Citrus Fruit Prepared by Gamma Irradiation of Budsticks (감귤 돌연변이체의 인간 암세포 증식 억제와 자연사멸 증강효과)

  • Kim, Ji Hye;Kim, Min Young
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1051-1058
    • /
    • 2015
  • Citrus mutant fruits were induced by irradiation of citrus budsticks with 120 Gy of cobalt (60CO) gamma irradiation. The citrus mutant inhibited the growth and induced apoptosis in various human cancer cells, including A549, HepG2, HCT116, MCF-7, and Hela. The results of a trypan blue exclusion assay showed that citrus mutant fruits exhibited excellent antiproliferation activity in various human cancer cells and low cytotoxicity in normal 16HBE140- and CHANG cells. In addition, the cell death induced by the citrus mutant fruits was associated with an increased population of cells in sub-G1 phase, and it caused DNA fragmentation in human lung adenocarcinoma A549 and hepatocellular carcinoma HepG2 cells. It also up-regulated the amount of cellular nitric oxide (NO) produced as a result of nitric oxide synthase (NOS) activation and suppressed the inhibitor of apoptosis protein (IAP) family in A549 and HepG2 cells. These findings indicate that the citrus mutant fruits activates the NO-mediated apoptotic pathway in A549 and HepG2 cells. It may merit further investigation as a potential chemotherapeutic and chemopreventive agent for the treatment of various types of cancer cells. The results provide important major new insights into the mechanisms of the anticancer activity of citrus mutant fruits.