• Title/Summary/Keyword: IAA 에틸렌

Search Result 16, Processing Time 0.02 seconds

Effect of Quercetin on Auxin-induced Ethylene Production in Barley Coleoptiles (Quercetin이 보리 자엽초에서 옥신에 의해 유도되는 에틸렌 생성에 미치는 영향)

  • 이준승
    • Journal of Plant Biology
    • /
    • v.35 no.4
    • /
    • pp.409-414
    • /
    • 1992
  • Effect of quercetin, a kind of natural plant flavonoids, on auxin-induced ethylene production in barley coleoptiles was studied. Auxin-induced ethylene production was apparently stimulated by quercetin. This stimulatory effect of quercetin appeared after 4 h of incubation period. Ethylene production was stimulated 200% over the control after 8 h of incubation by $3{\times}10^{-5}\;M$ quercetin. The quercetin effect was most prominent at $10^{-4}\;M$ of IAA. Ethylene production induced by the synthetic auxin, 2,4-D and NAA, was not significantly affected by quercetin. Also ACC-based ethylene production was unaffected by the flavonoid. In an effort to elucidate mechanisms of quercetin action on auxin-induced ethylene production, the effect of quercetin on 1M metabolism was studied. Data obtained from these experiments indicate that quercetin treatment resulted in about 90% inhibition of IAA oxidase activity. IAA ($3{\times}10^{-5}\;M$) conjugation was found to be not affected by quercetin. This results suggest that the stimulatory effect of quercetin on auxin-induced ethylene production may be due to the fact that quercetin inhibits 1M oxidase activity, thus increasing the free IAA level.

  • PDF

Effect of Benzyladenine on the IAA-Induced Ethylene Production in the Primary Roots of Maize (옥수수 일차뿌리에서 benzyladenine이 IAA에 의해 유도된 에틸렌 생성에 미치는 영향)

  • Song, Seong-Hee;Park, Ji-Hye;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.745-749
    • /
    • 2010
  • This study was conducted to examine the effect of cytokinin ($N^6$-benzyladenine; BA) and/or an IAA on ethylene production of maize (Zea mays) primary roots. When the two hormones were applied exogenously, both hormones synergistically increased ethylene production, which was greater than the sum of the level of each hormone's effect. For example, the ethylene production was stimulated between about 87% and 170% of the control by $10^{-4}\;M$ BA with $10^{-4}\;M$ IAA for 8 hours respectively, whereas the ethylene production was increased by about 480% of the control when the two hormones were treated simultaneously. Such a synergistic effect was also found in changes in the activity and gene expression level of ACC synthase. However, in the case of ACC oxidase did not show any observable effects. Based on our results, it is possible to conclude that BA and IAA stimulated the ethylene production synergistically by affecting the ACC synthase in maize roots.

IAA Synthesis and Polyamine Metabolism in Higher Plants: Effects of IAA on the Activity of Diamine Oxidase in Seedlings of Soybean (고등식물에서 IAA합성과 Polyamine 대사에 관한 연구: 대두의 유식물에서 IAA가 Diamine Oxidase의 활성에 미치는 영향)

  • 김도균
    • Journal of Plant Biology
    • /
    • v.35 no.3
    • /
    • pp.265-271
    • /
    • 1992
  • Vie investigated the effect of indole acetic acid (IAA) on diamine oxidase (DAO; EC 1.4.3.6) in the seedling of soybean (Glycine max L. forma Paldalkong). DAO activity was not detected in the resting soybean seeds. During germination it appeared in the elongating zone on day 3, increased up to day 4 and decreased thereafter. Endogenous IAA content has been shown the same pattern as DAO activity. However, cadaverine content was reduced on day 4. To investigate the effect of IAA on DAO activity, the segments of hypocotyl on day 3 were soaked in various concentration of IAA. The activity increased at low concentrations ($10^{-7}-10^{-6}M$) of 1M as compared to that of control but not at high concentrations ($10^{-5}-10^{-4}M$) of IAA. Differing from DAO activity, cadaverine content increased as concentrations of IAA increased. On the other hand, ethylene was induced by IAA at high concentrations. To study the effect of ethylene on DAO activity, we cotreated IAA and 2,S-Norbonadiene (NDE). In this case, DAO activity was not affected.fected.

  • PDF

Effect of Ascorbic Acid on the Gravitropic Response of Primary Roots in Maize (옥수수 일차뿌리에서 Ascorbic acid가 굴중성 반응에 미치는 효과)

  • Kim, Chung Su;Mulkey, Timothy J.;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1364-1370
    • /
    • 2014
  • Ascorbic acid (AA) is a multifunctional metabolite in plants that is essential for plant development and growth. We examined the effect of AA, an antioxidant, on the gravitropic response of primary roots in maize. The application of $10^{-3}$ M AA to the elongation zone did not affect the gravitropic response and slightly inhibited the root growth. However, treatment with both $10^{-5}$ M and $10^{-3}$ M AA at the root tip increased the gravitropic response and inhibited root growth. Differences in indole-3- acetic acid (IAA) activity between the upper and lower hemispheres of the root resulted in differential elongation along the horizontal root. Roots are extremely sensitive to IAA, and increasing the amount of IAA in the lower hemisphere of the root inhibited elongation. Therefore, we examined the effect of IAA in the presence of AA. The inhibitory effect of AA on the gravitropic response was greater in combination with IAA. To understand the role of AA in the regulation of root growth and the gravitropic response, we measured ethylene production in the presence of AA in the primary roots of maize. AA stimulated ethylene production via the activation of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene, which regulates the conversion of ACC to ethylene. These results suggest that AA alters the gravitropic response of maize roots through modification of the action of ethylene.

Effect of Oryzalin on the Gravitropic Response and Ethylene Production in Maize Roots (옥수수 일차뿌리에서 oryzalin이 굴중성 반응과 에틸렌 생성에 미치는 효과)

  • Kim, Chungsu;Mulkey, Timothy J.;Kim, Jong-Sik;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1223-1229
    • /
    • 2015
  • Oryzalin is a dinitroaniline herbicide, which disrupts the arrangement of microtubules. Microtubules and microfilaments are cytoskeletal components that are thought to play a role in the sedimentation of statoliths and the formation of cell walls. Statoliths regulate the perception of gravity by columella cells in the root tip. To determine the effect of oryzalin on the gravitropic response, ethylene production in primary roots of maize was investigated. Treatment with 10-4 M oryzalin to the root tip inhibited the growth and gravitropic response of the roots. However, the treatment had no effect on the elongation zone of the roots. An application of 10-4 M oryzalin for 15 hr to the root tip caused root tip swelling. The application of 1-aminocycopropane-1-carboxylic acid (ACC), a precursor of ethylene, to the root tip also inhibited the gravitropic response. To understand the role of oryzalin in the regulation of the growth and gravitropic response of roots, ethylene production in the primary roots of maize was measured following treatment with oryzalin. Oryzalin stimulated ethylene production via the activation of ACC oxidase (ACO) and ACC synthase (ACS), and it increased the expression of ACO and ACS genes. Indole-3-acetic acid (IAA) played a key role in the asymmetric elongation rates observed during gravitropism. The results suggest that oryzalin alters the gravitropic response of maize roots through modification of the arrangement of microtubules. This might reduce the distribution of IAA in the upper and lower sides of the elongation zone and increase ethylene production, thereby inhibiting growth and gravitropic responses.

Specificity of Auxin Action on Ethylene Production in Corn Coleoptile Segments (옥수수(Zea mays L.) 자엽초 절편에서 에틸렌 생성에 대한 오옥신의 작용 특성)

  • 윤인선
    • Journal of Plant Biology
    • /
    • v.34 no.4
    • /
    • pp.325-330
    • /
    • 1991
  • The ability of several auxin analogs to induce ethylene production was tested in the corn coleoptile. The synthetic auxins 1-naphthaleneacetic acid (1-NAA) and 2, 4-dichlorophenoxyacetic acid (2, 4-D) had strong stimulatory effects on ethylene induction surpassing that of IAA. Both 2-naphthalaneacetic acid (2-NAA) and 2, 6-dichlorophenoxy acetic acid (2, 6-D), structural analogs of these auxins, respectively, were found to be inactive. Treatment with NPA, a strong inhibitor of polar auxin transport, led to drastic increase in IAA-induced ethylene production while it has bo effect on ethylene production induced by 1-NAA. A positive correlative existed between intracellular auxin level and ethylene production.

  • PDF

Effect of Methyl Jasmonate on Ethylene Production in Mungbean Hypocotyls and Leaf Segments (녹두 하배축과 잎에서의 에틸렌 생성에 대한 Methyl Jasmonate의 효과)

  • 이규승
    • Journal of Plant Biology
    • /
    • v.37 no.4
    • /
    • pp.445-452
    • /
    • 1994
  • Effects of methyl jasmonate (MeJA) on ethylene production in mungbean (Phaseolus radiatus L.) hypocotyl and leaf segments were studied. Ethylene production in mungbean hypocotyl segments was decreased in proportion to MeJA concentrations and $450\;\mu\textrm{M}$ of MeJA showed 50% inhibitory effect. This inhibitory effect appeared after 3 h of incubation period and continued for 24 h. Inhibition of ethylene production by MeJA was due to the decrease in 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity. However, MeJA treatment had no effect on ACC content and ACC synthase activity. MeJA also inhibited auxin-induced ethylene production in hypocotyls. To investigate the mechanisms of the inhibitory effect of MeJA on the auxin-induced ethylene production, ACC synthase and ACC oxidase activity were examined after MeJA treatment. MeJA decreased the ACC content and ACC synthase activity as weD as ACC oxidase activity in the auxin-treated tissue. These results suggest that the inhibition of MeJA on auxin-induced ethylene production is not due to the direct inhibitory effect of MeJA on the ACC synthase, but to the inhibition of the ability of IAA to promote the synthesis of ACC synthase. In contrast, ethylene production from the detached mungbean leaves was stimulated by MeJA. The rate of ethylene production increased approximately 65% over the control after 12 h of incubation period by $4.5\;\mu\textrm{M}$ MeJA. When MeJA was applied to detached leaves along with IAA, the effect of MeJA appeared to be additive. In an effort to elucidate mechanisms of MeJA action on auxin-induced ethylene production in the leaf tissue, enzyme activities of ACC synthase and ACC oxidase were examined. MeJA stimulated ACC oxidase activity but did not affect ACC synthase activity in leaf tissue. Together, these results suggest that MeJA plays different roles in the ethylene production in the different mungbean tissues.issues.

  • PDF

Effect of RGD Peptide on Ethylene Production from Cultured Carrot Cells (당근 배양세포에서 RGD Peptide가 에틸렌 생성에 미치는 영향)

  • 이준승
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.391-398
    • /
    • 1993
  • It has been inferred that membrane-ECM (extracellular matrix) interaction in plants may be also mediated by an RGD-dependent recognition system as in animal cells. Effects of RGD peptide on ethylene production was examined in suspension cultured carrot cells. Treatment of the cells with RGD peptide containing RGD (Arg-Gly-Asp) sequence stimulated ethylene production. When RGD peptide was applied to carrot cells treated with 1M, the effect of RGD peptide appeared to be additive. ACC synthase activity in cells pretreated with RGD peptide likewise increased over the control. In an effort to check the sequence specificity of the RGD peptide, cells were treated with substituted RGD peptide, i.e. RGK (Arg-Gly-Lys) and RGE (Arg-Gly-Glu) peptide, respectively. RGK peptide did not stimulate ethylene production but RGE peptide did. The results strongly suggest that the stimulatory effect of RGD peptides on ethylene production may be associated with a physiological phenomenon through a specific recognition between RGD peptide including RGD sequence and their putative plasma membrane receptors.eptors.

  • PDF

Effects of Ethylene Precursor, Auxin and Methyl Jasmonate on the Aerenchyma Formation in the Primary Root of Maize (Zea mays) (옥수수(Zea mays) 원뿌리의 통기조직 발달에 미치는 에틸렌 전구체, 옥신, 메틸자스몬산의 효과)

  • Ho, Jongyoon;Maeng, Sohyun;Park, Woong June
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • We have investigated the effects of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), indole-3-acetic acid (IAA) and methyl jasmonate (MeJA) on the development of aerenchyma in the primary root of maize (Zea mays). Because plant hormones affected the longitudinal organization of the primary root, we need an indicator to direct the positions for comparison between control and hormone-treated roots. Therefore, the zones of the maize primary root were categorized as PR25, PR50 and PR75, where each value indicates the relative position between the root tip (PR0) and the base (PR100). Aerenchyma was not observed at PR25 and PR50 and rarely found at PR75 in the cortex of control roots. The aerenchymal area at PR75 increased in the presence of the ethylene precursor ACC or a natural auxin IAA. On the other hand, MeJA differentially acted on non-submerged and submerged roots. Exogenously applied MeJA suppressed the aerenchyma formation in non-submerged roots. When the primary root was submerged, aerenchymal area expanded prominently. The submergence-induced aerenchyma formation was amplified with MeJA. Lateral root primordia have been known to inhibit aerenchymal death of surrounding cells. All the three hormones stimulating aerenchyma formation as described above did not restore the inhibition caused by lateral root primordia, suggesting that the inhibitory step regulated by lateral root primordia can be located after hormonal signaling steps.

Effects of Methyl Jasmonate on Ethylene Producton in Tomato (Lycopersicon esculentum Mill.) Hypocotyl Segments and Fruits (Methyl jasmonate가 토마토(Lycopersicon esculentum Mill.)하배축 절편과 열매에서 에틸렌 생성에 미치는 영향)

  • June Seung Lee
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.235-242
    • /
    • 1995
  • Effects of methyl jasmonate (MeJA) on ethylene production in tomato(Lycopersicon esculentum Mill.) hypocotyl segments and fruits were studied. Ethylene production in tomato hypocotyl segments was inhibited by the increasing concentratons of MeJA, and 450 $\mu$M of MeJA showed 50% inhibitory effect. Time course data indicate that this inhibitory effect of MeJA appeared after 3 h of incubation period and continued until 24 h. Inhibition of ethylene producton by MeJA was due to the decrease in 1-aminocyclopropane-1-carboxylic acid(ACC) synthase activity. However, MeJA treatment had no effect on ACC oxidase activity and the accumulaton of ACC oxidase mRNAs. MeJA also inhibited auxin-induced ethylene production by decreasing in ACC synthase activity. In contrast, MeJA stimulated ethylene production in tomato fruits. When 30 $\mu$L/mL MeJA was treated in a gaseous state, ethylene production doubled and this stimulating effect continued until 4 days. To investigate the mechanisms of MeJA on ethylene production, ACC synthase and ACC oxidase activities were examined after MeJA treatment. MeJA increased the activities of both ACC synthase and ACC oxidase, and induced ACC oxidase mRNA accumulation. These data suggest that MeJA plays distinct roles in the ethylene production in different tomato tissues. It is possible that MeJA affects differently the mechanisms of signal transuction leading to the ethylene biosynthesis.

  • PDF