• 제목/요약/키워드: I-V characteristics curve

검색결과 155건 처리시간 0.021초

전류센서가 없는 열전모듈의 최대전력점 추적방식 (Maximum Power Point Tracking operation of Thermoelectric Module without Current Sensor)

  • 김태경;박대수;오성철
    • 한국산학기술학회논문지
    • /
    • 제18권9호
    • /
    • pp.436-443
    • /
    • 2017
  • 최근, 지구온난화 등의 문제로 인해 새로운 에너지 기술의 개발이 화제가 되고 있다. 중규모 이상의 출력을 얻도록 최적화된 태양광 및 태양열, 풍력 발전과 같은 신재생에너지 기술과 다르게 에너지 하베스팅기술은 출력전력이 매우 작아 크게 주목받지 못하고 있다. 하지만 최근 모바일 산업이 활성화 되면서 에너지 하베스팅기술의 활용가치가 재평가 받고 있다. 또한, 최대전력점 추적방식기술 역시 활발히 연구가 이루어지고 있다. 본 논문에서는 일정한 저항부하를 위한 열전모듈의 새로운 최대전력점추적 제어방식을 제안한다. 열전 모듈(이하 TEM: Thermoelectric Module)의 V-I곡선특성과 내부저항을 분석하고. 기존의 MPPT제어방식을 비교하였다. P&O(Perturbation and Observation)제어방식은 전압, 전류를 측정하기위한 센서 2개를 사용해야하기 때문에 CV제어방식보다 경제성이 떨어지지만 보다 정확히 MPP를 찾는다는 장점을 가진다. CV(Constant Voltage)제어방식은 전압센서 1개만 사용하기 때문에 경제적인 측면에서는 P&O제어방식보다 뛰어나지만, MPP가 정확히 못하다는 단점을 가지고 있다. 본 논문에서는 두 제어방식의 장점만을 가지고 TEM의 최대전력점(MPP)을 추적하도록 설계하였다. 제안된 MPPT 제어 방식은 PSIM 프로그램을 이용한 모의실험으로 확인하였으며, 하드웨어제작을 통해 제안된 MPPT제어 방식을 검증하였다.

공침법으로 제조된 $\textrm{SnO}_2-\textrm{In}_2\textrm{O}_3$ 계의 가스감응특성 및 감응기구 (Gas Sensing Properties and Mechanism of the $\textrm{SnO}_2-\textrm{In}_2\textrm{O}_3$ System Prepared by Coprecipitation Method)

  • 윤기현;임호연;권철한;윤동현;김승렬;홍형기;이규정
    • 한국재료학회지
    • /
    • 제8권9호
    • /
    • pp.813-818
    • /
    • 1998
  • 공침법을 이용하여 $\textrm{In}_{2}\textrm{O}_{3}$가 0-10 wt.% 첨가된 $\textrm{SnO}_{2}$ 계 미세 분말을 합성한 후, 스크린 인쇄법(screen printing)으로 후막형 가스센서를 제조하고 탄화수소($\textrm{C}_{3}\textrm{H}_{8}$, $\textrm{C}_{4}\textrm{H}_{10}$) 가스에 대하여 가스 감응 특성을 조사하였다. $\textrm{In}_{2}\textrm{O}_{3}$$\textrm{SnO}_{2}$의 입자 성장을 억제시키기 위하여 첨가해 주었는데, $600^{\circ}C$에서 하소한 후에도 수 nm 크기의 미세한 입자를 얻을 수 있었다. 공침시 pH 값은 $\textrm{SnO}_{2}$ 의 입자 크기에 영향을 거의 미치지 않은 반면, $\textrm{In}_{2}\textrm{O}_{3}$ 첨가량은 입자 크기와 미세 구조에 큰 영향을 주었다. $\textrm{In}_{2}\textrm{O}_{3}$ 첨가량이 증가할수록 입자 크기는 감소하고 비표면적은 증가하였으며, 센세의 동작 온도를 약 $500^{\circ}C$로 하여 측정한 가스 감응 특성은 3wt.% 첨가했을 때 최대 감도를 나타내고 그 이상의 첨가량에서는 오히려 저하되었다. 3wt.%의 In2O3첨가시 $\textrm{SnO}_{2}$의 입자 크기와 비표면적은 각각 9.5nm, 38$\m^2$/g이었다. 임피던스 측정으로부터 얻은 단일 반원의 Nyquist curve와 선형의 전류-전압(1-V)특성 곡선으로부터, $\textrm{In}_{2}\textrm{O}_{3}$를 첨가하여 수nm로 입자 크기를 억제한 $\textrm{SnO}_{2}$ 계 가스센서는 미세 입자들끼리 형성한 치밀한 응집체와 이들 간의 계면(boundary)에 의해서 가스 감응 특성이 영향을 받음을 알 수 있었다.

  • PDF

유리 덮개로 보호된 OLED소자의 발광특성 저하 연구 (Degradation Mechanisms of Organic Light-emitting Devices with a Glass Cap)

  • 양용석;추혜용;이정익;박상희;황치선;정승묵;도이미;김기현
    • 한국진공학회지
    • /
    • 제15권1호
    • /
    • pp.64-72
    • /
    • 2006
  • 우리는 tris-(8-hydroxyquinoline) aluminum (Alq3)와 같은 단분자 유기물 박막을 사용하여 유기물 발광 소자(OLEDs)를 제작하였다. OLEDs는 ITO가 증착된 유기 기판 위에서 제조되었고, 수명 측정 이후의 OLEDs에 대한 발광, 축전 용량, 유전 손실 특성 등을 측정하였다. 여기서, 수명 측정을 위하여 사용한 인가 전류는 0.5mA 에서 9mA까지 였고, 수명의 인가 전류 의존성은 약 2 mA 부근에서 다르게 관찰되었다. C-V 특성 곡선에서 나타난 축전 용량의 봉우리들은 유기물 내의 분극과 유기물과 금속의 경계에서 나타난 분극의 영향으로 추측된다. 그리고, 2 mA 보다 낮은 전류 하에서 수명 측정 후 발광특성이 저하된 OLEDs에서는 소자 내의 분극 크기의 감소와 전하 유입 장벽의 낮아짐이 같이 관찰되었다.

입력전류 제어형 고효율 인버터아크용접시스템의 입력 및 출력 특성연구 (Input and Output Characteristics of Input Current Controlled Inverter Arc Welding Machine with High Efficiency)

  • 최규하
    • 전력전자학회논문지
    • /
    • 제5권4호
    • /
    • pp.358-369
    • /
    • 2000
  • 얇은 판형 용접에 광범위하게 사용되는 피복아크 용접기는 용접전원으로 변압기를 사용하는 AC 아크용접기외 인버터를 사용하는 인버터 아크 용접기로 구분된다. AC아크용접기는 변압기를 사용하므로 전체시스템의 부피 및 무게가 커지며 변압기 탭조정으로 인한 최적 출력전압이 설정되지 않아 용접성는이 저하되는 단침이 있다. 이러한 단점올 개선히고 용접성능을 향상시키기 위하여 고속반도체 소자를 이용한 인버터 아크용접기가 많이 연구되고 있다. 인버터 피복아크 용집기시스템은 다이오드 정류기, 인버터, 고주파 변압기, 출력측 정류기 및 리엑터로 구성되어져 있는데, 입력전원측에 다아오두 정류기를 사용함으로서 고조파 다량 힘유 및 입력역률 저하등을 가져오며, 일정 듀티를 갖는 정전압제어방식을 이용하고 아크용접시스템 고유의 정전류특성은 변압기의 누설구조애 의해 실현하고 았다. 따라서 본 논문에서든 이상의 단점을 해결하기 위하여 PWM 컨버터를 적용하여 입력측의 고조파를 제거하고 입력역률 99% 유지할 수 있었으며, 또한 새로운 혼형제어기법을 적용하여 순시적인 용접 출력전압과 전류를 제어하여 용접 출럭전압과 전류를 일정하게 유지시킴으로서 AC아크용접기와 비교하여 스패터룹 70%감소시켰으며 무부하시 10%의 효율 상승을 가져왔다.

  • PDF

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF