• Title/Summary/Keyword: I-거더

Search Result 134, Processing Time 0.02 seconds

Dynamic Response of PSC I shape girder being used wide upper flange in Railway Bridge (확장된 상부플랜지 PSC I형 거더교의 동특성 및 동적안정성 분석)

  • Park, Jong-Kwon;Jang, Pan-Ki;Cha, Tae-Gweon;Kim, Chan-Woo;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.125-135
    • /
    • 2015
  • The tendency of more longer span length being required economical in railway bridges is studying about PSC I shaped girder. In this case, it is important to analyze and choose the effective girder section for stiffness of bridge. This study investigates the dynamic properties and safety of PSC I shaped girder being used wide upper flange whose selection based on radii and efficiency factor of flexure for railway bridge in different span type. In addition, 40m PSC Box girder bridge adopted in Honam high speed railway is further analyzed to compare dynamic performance of PSC I shaped girder railway bridge with same span length. Time history response is acquired based on the mode superposition method. Static analysis is also analyzed using standard train load combined with the impact factor. Consequently, the result met limit values in every case including vertical displacement, acceleration and distort.

Free-vibration Characteristics of Two-I-girder Steel Bridges Curved in Plan (소수주형 수평곡선 강교량 상부구조의 자유진동 특성 분석)

  • Lee, Kee Sei;Kim, Seungjun
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.365-371
    • /
    • 2016
  • In the case of the superstructure which is consist of two I girders and slab, the section can behave as II section, so that the neutral axis with respect to out of plane direction flexure can be regarded as major axis. Therefore in-plane flexural mode might govern the free vibration mode. Meanwhile, horizontally curved girders always experience not only bending moments but also torsional moments although the primary load is usually supposed to be gravitational load. The interaction due to bending and torsional moments make the behavior complicated and torsional mode may govern the free vibration mode. In other words, structure can have different dynamic characteristic due to its initial curvature. In this research, using 3-dimensional sell elements, free-vibration analyses are carried out due to initial curvature. The analysis models are assumed to be composite and non-composite and finally natural frequency and eigen mode are discussed.

Flexural Strength of Composite HSB Hybrid Girders in Positive Moment (HSB 강재 적용 강합성 복합단면 거더 정모멘트부의 휨저항강도)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.385-395
    • /
    • 2011
  • The flexural strength of composite HSB hybrid I-girders under positive moment is investigated by the moment-curvature analysis method to evaluate the applicability of the current AASHTO LRFD design specification to such girders. The hybrid girders are assumed to have the top flange and the web fabricated from HSB600 steel and the bottom flange made of HSB800 steel. More than 6,200-composite I-girder sections that satisfy the section proportion limits of AASHTOL RFD specifications are generatedby the random sampling technique to consider a statistically meaningful wide range of section properties. The flexural capacities of the sections are calculated by the nonlinear moment-curvature analysis in which the HSB600 and HSB800 steels are modeled as an elastoplastic, strain-hardening material and the concrete as CEB-FIP model. The effects of ductility ratio and compressive strength of concrete slab on the flexural strength of composite hybrid girders make of HSB steels are analyzed. Numerical results indicated that the current AASHTO-LRFD equation can be used to calculate the flexural strength of composite hybrid girders fabricated from HSB steel.

Seismic Fragility Analysis of Curved Bridge Structure by Girder Section Shape (거더 단면형상 변화에 따른 곡선교량의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Buseog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.626-633
    • /
    • 2019
  • Purpose: The primery objecting of this paper is to explore the seismics fragility of curved bridge based on the change of girder section. Method: The cross section of the bridge structure was constructed with I, T, and Box shapes and then, in order to perform the seismic fragility 24 seismic ground motions were used, including Gyeongju Pohang Earthquake. Result: Fist, T-Shape of the bridge strucrue was much fragility in terms of the stress on girder section, in comparison to the other shapes. The seismic fragilies of the structures with respect to displacement(drift ratio), however, were shown simialr. Conclusion: In other to wvaluation the seismic fragility of curved structure using different girder shapes, analytical models of the structure were constructed and then, the probability failure of box-shape girder was shown lower probability. In further, Parametric studies of curved structures must be conducted.

Assessment for Extending Span Ranges of PSC Girder Bridges : I. Proposed Strategy to Estimate the Spans (PSC 거더교의 장경간화 평가 기법 : I. 경간 평가 기법의 제안)

  • Jeon, Se Jin;Choi, Myoung Sung;Kim, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.235-241
    • /
    • 2009
  • PSC girder bridge is known to be more economical than other types of bridges and has been usually applied to a span range of 25 m to 35 m according to the standard shapes for highway bridges in Korea. The spans of the recently developed new types of PSC girders are also limited to 50 m at most. In this study, therefore, feasibility of the long-span PSC girder that reaches more than 50 m is investigated by applying several strategies from the perspectives of materials, design and construction. A systematic procedure is proposed that can be used to assess the effect of each strategy on the span. The proposed scheme adopts a graphical approach that represents a relationship between the number of prestressing tendons and the span, and is derived on a basis of safety assessment equations of the girder in each stage of fabrication and in service. In the companion paper, the amount of span extension is quantitatively evaluated by applying the proposed scheme into a sample PSC girder bridge.

Three Dimensional Model for Dynamic Moving Load Analysis of a PSC-I Girder Railway Bridge (PSC-I 거더 철도교량의 3차원 동적 이동하중 해석 모델)

  • Cho, Jeong-Rae;Kim, Dong-Seok;Kim, Young Jin;Kwark, Jong-Won;Jang, Seung Yup
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.286-297
    • /
    • 2013
  • In this paper we evaluated dynamic stability, considering the effects of modeling and analysis methods on moving load analysis, for which a sophisticated 3 dimensional model of a PSC-I type girder bridge was used. For this purpose, we suggested a reasonable modeling method and the physical properties of the concrete and ballasted track system involved. We also analyzed the response characteristics according to: 1) the type of track system; 2) whether or not the track was modeled; 3) whether or not the distance between the girder center and the bearing were considered; 4) the analysis method (i.e., direct integral and modal analysis); 5) whether or not the frequency was filtered.

Section Model Study on the Aerodynamic Behaviors of the Cable-Stayed Bridges with Two I-Type Girders Considering Structural Damping and Turbulence Intensity (2개의 I형 거더를 가진 사장교의 구조감쇠비 및 난류강도를 고려한 공기역학적 거동에 관한 단면모형실험 연구)

  • Cho, Jae-Young;Kim, Young-Min;Cho, Young-Rae;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1013-1022
    • /
    • 2006
  • Although the cable-stayed bridges with two I-type girders inherently do not have good aerodynamic characteristics, a lot of the bridges with this type girders are constructed in Korea recently because of an economical merit. This paper investigated the aerodynamic characteristics of the cable-stayed bridges with two I-type girders. Section model tests were conducted in order to investigate the aerodynamic behaviors of this section with varying of the angles of attack, turbulence intensity and damping ratios. Two deck section configurations with different torsional stiffness were studied under construction and after completion respectively. Three types of the fairings were investigated to improve the aerodynamic characteristics of the bridges. The result of this study showed that the traditional section model test in uniform flow estimates the aerodynamic behavior rather pessimistically. The wind induced responses of the bridges were severely varied in accordance with the turbulence intensity and the structural damping ratio. The proposed fairing reduced the magnitude of the vortex-shedding vibrations and buffeting responses. It also increased the wind speed at which flutter occurs. It is expected that these investigations would provide a lot of information for the design of the cable stayed bridges with two I-type girders regarding wind resistance.

A Numerical and Experimental Study on Structural Performance of Noncomposite and Composite Eco-Arch Structures subjected to Concentrated Loads (집중하중을 받는 비합성.합성 생태아치구조물의 성능평가를 위한 수치해석 및 모형실험 연구)

  • Kim, Yong-Hee;Park, Jong-Sup;Lee, Young-Ho;Oh, Min-Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.173-183
    • /
    • 2010
  • In this study, noncomposite and composite eco-arch structures with I-beams and precast concrete(PC) decks were investigated. Four finite-element models(a steel-girder model, a steel-girder-and-several-PC-panels model, a three-steel-girder model, and a three-steel-girder-and-several-PC-panels model) using a general finite-element program, ABAQUS, were reviewed to predict the strength of the noncomposite and composite arch structures. Based on the results of the finite- element analysis, the behaviors of the four models were investigated, and deflection and strain gauges for the experimental specimen consisting of three steel girders and several PC panels were set up to obtain the ultimate strength. The ultimate strength of the specimen was estimated to be 1,961kN. The ultimate strength was much larger than the 1,380-kN load calculated using AASHTO LRFD Bridge Design Specifications(2007). The noncomposite and composite arch bridges were found to have enough strength for safety.

On-Site Construction Method for U-Girder with Pre-tension and Verification of Analytical Performance of Anchoring Block (프리텐션 U형 거더 현장 제작 방법 및 정착 블록 해석적 성능 검증)

  • Park, Sangki;Kim, Jaehwan;Jung, Kyu-San;Seo, Dong-Woo;Park, Ki-Tae;Jang, Hyun-Ock
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.67-77
    • /
    • 2022
  • In South Korea, U-type girder development was attempted as a means to increase the length of I-type girder, but due to the large self-weight according to the post-tension method, the application of rail bridges of 30m or less is typical. There are not many examples of application of pre-tension type girder. This study does not limit the post-tension method, but applies the pre-tension method to induce a reduction in self-weight and materials used due to the reduction of the cross-section. In addition, we intend to apply the on-site pre-tensioning method using the internal reaction arm of the U-type girder. The prestressed concrete U-type girder bridge is composed of a concrete deck slab and a composite section. Compared to the PSC I-type, which is an open cross-section because the cross section is closed, structural performance such as resistance and rigidity is improved, the safety of construction is increased during the manufacturing and erection stage, and the height ratio is reduced due to the reduction of its own weight. Therefore, it is possible to secure the aesthetic scenery and economical of the bridge. As a result, it is expected that efficient construction will be possible with high-quality factory-manufactured members and cast-in-place members. In this paper, the introduction of the pre-tension method on-site and the analytical performance verification of the anchoring block for tension are included.