• Title/Summary/Keyword: I/R injury

Search Result 108, Processing Time 0.027 seconds

Neuroprotective effects of consuming bovine colostrum after focal brain ischemia/reperfusion injury in rat model

  • Choi, Han-Sung;Ko, Young-Gwan;Lee, Jong-Seok;Kwon, Oh-Young;Kim, Sun-Kyu;Cheong, Chul;Jang, Ki-Hyo;Kang, Soon-Ah
    • Nutrition Research and Practice
    • /
    • v.4 no.3
    • /
    • pp.196-202
    • /
    • 2010
  • To investigate the neuroprotective effects of bovine colostrums (BC), we evaluate the ability of consuming BC after focal brain ischemia/reperfusion injury rat model to reduce serum cytokine levels and infarct volume, and improve neurological outcome. Sprague-Dawley rats were randomly divided into 4 groups; one sham operation and three experimental groups. In the experimental groups, MCA occlusion (2 h) and subsequent reperfusion (O/R) were induced with regional cerebral blood flow monitoring. One hour after MCAO/R and once daily during the experiment, the experimental group received BC while the other groups received 0.9% saline or low fat milk (LFM) orally. Seven days later, serum pro-inflammatory cytokine (IL-$1{\beta}$, IL-6, and TNF-${\alpha}$) and anti-inflammatory cytokine (IL-10) levels were assessed. Also, the infarct volume was assessed by using a computerized image analysis system. Behavioral function was also assessed using a modified neurologic severity score and corner turn test during the experiment. Rats receiving BC after focal brain I/R showed a significant reduction (-26%/-22%) in infarct volume compared to LFM/saline rats, respectively (P < 0.05). Serum IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ levels were decreased significantly in rats receiving BC compared to LFM/saline rats (P < 0.05). In behavioral tests, daily BC intake showed consistent and significant improvement of neurological deficits for 7 days after MCAO/R. BC ingestion after focal brain ischemia/reperfusion injury may prevent brain injury by reducing serum pro-inflammatory cytokine levels and brain infarct volume in a rat model.

The Protective Effect of Epigallocatechin-3 Gallate on Ischemia/Reperfusion Injury in Isolated Rat Hearts: An ex vivo Approach

  • Piao, Cheng Shi;Kim, Do-Sung;Ha, Ki-Chan;Kim, Hyung-Ryong;Chae, Han-Jung;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.259-266
    • /
    • 2011
  • The aim of this study was to evaluate the preventive role of epigallocatechin-3 gallate (EGCG, a derivative of green tea) in ischemia/reperfusion (I/R) injury of isolated rat hearts. It has been suggested that EGCG has beneficial health effects, including prevention of cancer and heart disease, and it is also a potent antioxidant. Rat hearts were subjected to 20 min of normoxia, 20 min of zero-flow ischemia and then 50 min of reperfusion. EGCG was perfused 10 min before ischemia and during the whole reperfusion period. EGCG significantly increased left ventricular developed pressure (LVDP) and increased maximum positive and negative dP/dt (+/-dP/dtmax). EGCG also significantly increased the coronary flow (CF) at baseline before ischemia and at the onset of the reperfusion period. Moreover, EGCG decreased left ventricular end diastolic pressure (LVEDP). This study showed that lipid peroxydation was inhibited and Mn-SOD and catalase expressions were increased in the presence of EGCG. In addition, EGCG increased levels of Bcl-2, Mn-superoxide dismutase (SOD), and catalase expression and decreased levels of Bax and increased the ratio of Bcl-2/Bax in isolated rat hearts. Cleaved caspase-3 was decreased after EGCG treatment. EGCG markedly decreased the infarct size while attenuating the increase in lactate dehydrogenase (LDH) levels in the effluent. In summary, we suggest that EGCG has a protective effect on I/R-associated hemodynamic alteration and injury by acting as an antioxidant and anti-apoptotic agent in one.

Effect of ${\alpha}-Lipoic$ Acid on Expression of pERK1/2 following Ischemia-Reperfusion Injury in the Hindlimb Muscle Flap of Rats (흰쥐 후지근 피판에서 허혈-재순환 손상시 pERK1/2 발현에 대한 ${\alpha}-lipoic$ Acid의 효과)

  • Song, Jeong-Hoon;Kim, Min-Sun;Park, Byung-Rim;Park, Han-Su;Chae, Jeong-Ryong;Lee, Hye-Me;Na, Young-Cheon
    • Archives of Reconstructive Microsurgery
    • /
    • v.14 no.2
    • /
    • pp.85-94
    • /
    • 2005
  • Purpose: This study was to evaluate the effect of ${\alpha}-lipoic$ acid, a potent free radical scavenger, on the expression of active form of extracellular signal-regulated kinase (pERK1/2) proteins from hindlimb muscles of rats following ischemia-reperfusion injury. Material and methods: 64 health, $280{\sim}350\;g$ weighted Sprague-Dawley male rats were used. In order to make a muscle flap, the gastrocnemius (GC) and soleus (SOL) muscles were dissected and elevated. The popliteal artery was occluded for 4hours and reperfused for 10 minutes, 30 minutes, 1 hour, 2 hours and 4 hours, respectively. Results: The ischemia by occlusion of the popliteal artery itself caused a minimal change in expression of phosphorylated form of proteins observed in hindlimb muscle. In contrast, after 4 hours of ischemia, immunoreactivity for pERK1/2 in the GC muscle showed dual peaks at 10 minutes and 4 hours after reperfusion. In ${\alpha}-lipoic$ acid treated group, the expression of pERK1/2 was increased significantly compared to I/R-only group. Conclusion: These results suggest that ${\alpha}-lipoic$ acid may protect I/R injury of the skeletal muscle through free radical scavening and activation of intracellular pERK1/2 expression.

  • PDF

Myocardial Protection by Recombinant Soluble P-selectin Glyco-protein Ligand-1: Suppression of Neutrophil and Platelet Interaction Following Ischemia and Reperfusion

  • Ham, Sang-Soo;Jang, Yoon-Young;Song, Jin-Ho;Lee, Hyang-Mi;Kim, Kwang-Joon;Hong, Jun-Sik;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.515-523
    • /
    • 2000
  • Polymorphonuclear leukocytes (PMNs) play an important role in myocardial ischemia/reperfusion (MI/R) injury. Moreover, platelets are also important blood cells that can aggravate myocardial ischemic injury. This study was designed to test the effects of PMNs and platelets separately and together in provoking cardiac dysfunction in isolated perfused rat hearts following ischemia and reperfusion. Additional control rat hearts were perfused with $75{\times}10^6$ PMNs, with $75{\times}10^6$ platelets, or with $75{\times}10^6\;PMNs+75{\times}10^6$ platelets over a five minute perfusion followed by a 75 min observation period. No significant reduction in coronary flow (CF), left ventricular developed pressure (LVDP), or the first derivative of LVDP (dP/dt max) was observed at the end of the observation period in any non-ischemic group. Similarly, global ischemia (I) for 20 min followed by 45 minutes of reperfusion (R) produced no sustained effects on the final recovery of any of these parameters in any group of hearts perfused in the absence of blood cells. However, I/R hearts perfused with either PMNs or platelets alone exhibited decreases in these variables of $5{\sim}10%$ (p<0.05 from control). Furthermore, I/R hearts perfused with both PMNs and platelets exhibited decreases of 50 to 60% in all measurements of cardiac function (p<0.01). These dual cell perfused I/R hearts also exhibited marked increases in cardiac myeloperoxidase (MPO) activity indicating a significant PMN infiltration, and enhanced P-selectin expression on the coronary microvascular endothelium. All cardiaodynamic effects as well as PMN accumulation and P-selectin expression were markedly attenuated by a recombinant soluble PSGL-1 which inhibits selectin mediated cell adhesion. These results provide evidence that platelets and PMNs act synergistically in provoking post-reperfusion cardiac dysfunction, and that this may be largely due to cell to cell interactions mediated by P-selectin. These results also demonstrate that a recombinant soluble PSGL-1 reduces myocardial reperfusion injury by platelet and PMNs interaction.

  • PDF

Effect of the Inhibition of Phospholipase $A_2$ in Generation of Free Radicals in Intestinal Ischemia/Reperfusion Induced Acute Lung Injury

  • Lee, Young-Man;Park, Yoon-Yub;Kim, Teo-An;Cho, Hyun-G.;Lee, Yoon-Jeong;Repine, John E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.3
    • /
    • pp.263-273
    • /
    • 1999
  • The role of phospholipase $A_2\;(PLA_2)$ in acute lung leak induced by intestinal ischemia was investigated in association with neutrophilic respiratory burst. To induce lung leak, we generated intestinal ischemia for 60 min prior to the 120 min reperfusion by clamping superior mesenteric artery in Sprague-Dawley rats. Acute lung leak was confirmed by the increased lung leak index and protein content in bronchoalveolar fluid. These changes were inhibited by mepacrine, the non-specific $PLA_2$ inhibitor. The lung myeloperoxidase (MPO) activity denoting the pulmonary recruitment of neutrophils was increased by intestinal I/R, but decreased by mepacrine. Simultaneously, the number of leukocytes in bronchoalveolar fluid was increased by intestinal ischemia/reperfusion (I/R) and decreased by mepacrine. Gamma glutamyl transferase activity, an index of oxidative stress in the lung, was increased after intestinal I/R but decreased by mepacrine, which implicates that $PLA_2$ increases oxidative stress caused by intestinal I/R. The $PLA_2$ activity was increased after intestinal I/R not only in the intestine but also in the lung. These changes were diminished by mepacrine. In the cytochemical electron microscopy to detect hydrogen peroxide, intestinal I/R increased the generation of the hydrogen peroxide in the lung as well as in the intestine. Expression of interleukin-1 (IL-1) in the lung was investigated through RT-PCR. The expression of IL-1 after intestinal I/R was enhanced, and again, the inhibition of $PLA_2$ suppressed the expression of IL-1 in the lung. Taken together, intestinal I/R seems to induce acute lung leak through the activation of $PLA_2$, the increase of IL-1 expression associated with increased oxidative stress by neutrophilic respiratory burst.

  • PDF

Korean Red Ginseng Induced Cardioprotection against Myocardial Ischemia in Guinea Pig

  • Lim, Kyu Hee;Kang, Chang-Won;Choi, Jin-Yong;Kim, Jong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.283-289
    • /
    • 2013
  • This study was designed to evaluate the protective effect of Korean red ginseng (KRG) against ischemia/reperfusion (I/R) injury in isolated guinea pig heart. KRG has been shown to possess various ginsenosides, which are the major components of Panax ginseng. These components are known naturally occurring compounds with beneficial effects and free radical scavenging activity. The heart was induced to ischemia for 60 min, followed by 120 min reperfusion. The hearts were randomly allocated into five groups (n=8 for each group): normal control (N/C), KRG control, I/R control, 250 mg/kg KRG group and 500 mg/kg KRG group. KRG significantly increased hemodynamics parameters such as aortic flow, coronary flow and cardiac output. Moreover, KRG significantly increased left ventricular systolic pressure (LVSP), the maximal rate of contraction (+dP/$dt_{max}$) and maximal rate of relaxation (-dP/$dt_{max}$). Also, treatment of KRG ameliorated electrocardiographic index such as the QRS, QT and RR intervals. Moreover, KRG significantly suppressed the lactate dehydrogenase, creatine kinase-MB fraction and cardiac troponin I and ameliorated the oxidative stress markers such as malondialdehyde and glutathione. KRG was standardized through ultra performance liquid chromatograph analysis for its major ginsenosides. Taken together, KRG has been shown to prevent cardiac injury by normalizing the biochemical and oxidative stress.

Vibration Control of a Knee Joint System considering Human Vibration of the New R.G.O. for a Rehabilitation Trainning of Paraplegia (II) (척수마비환자 재활훈련용 보행보조기의 인체진동을 고려한 무릎관절 시스템 진동제어(II))

  • Kim, Myung-Hoe;Jang, Dae-Jin;Baek, Yun-Soo;Park, Young-Pil;Park, Chang-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.446-452
    • /
    • 2002
  • This paper Presents a 3-D design and a Vibration control of a new walking R.G.O.(Robotic Gait Orthosis) and would like to develop a simulation by this walking system. The vibration control and evaluation of the new knee joint mechanism on the biped walking R.G.O.(Robotic Gait Orthosis) was a very unique system and was to obtain by the 3-axis accelerometer with a low frequency vibration for the paraplegia It will be expect that the spinal cord injury patients are able to recover effectively by a biped walking R.G.O.. The new knee joint system of both legs were adopted with a good kinematic characteristics. It was designed attached a DC-srevo motor and controller, with a human wear type. It was able to accomodate itself to a environments of S.C.I. Patients. It will be expect that the spinal cord injury patients are able to recover effectively by a new walking R.G.O. system.

  • PDF

Residual Activity and Effect of Soil Applied Herbicides on Succeeding Crops in Vegetable Field - 2. Residual Activity and Effect of Applied Herbicides on Succeeding Crops in Summer Crops - (주요(主要) 채소용(菜蔬用) 제초제(除草劑)의 토양중(土壤中)에서의 잔효(殘效)와 후작물(後作物)에 미치는 영향(影響) - 제(第)2보(報) 춘하작물(春夏作物)에 처리(處理)한 제초제(除草劑)의 잔효(殘效)와 후작물(後作物)에의 영향(影響) -)

  • Ryang, H.S.;Moon, Y.H.;Choi, E.S.;Jang, M.S.;Lee, J.H.
    • Korean Journal of Weed Science
    • /
    • v.11 no.1
    • /
    • pp.50-59
    • /
    • 1991
  • Residual period and carry-over effect of some herbicides were determined using a bioassay method in six summer crops(potato, carrot, corn, water melon, soybean, and sesame). The effects were measured at regular time intervals after applying different rates of the herbicides. There were no great differences in residual period and carry-over injury between the soils and kinds of crops used. However, the residual period varied with the herbicides studied and the carry-over injury was dependent upon season and rate of the herbicide application, sampling depth of soil, and kind and seeding date of the test plant. When the residual herbicides were applied, the carry-over injury could be minimized by selecting tolernet crops, delaying seeding of the crops after application of the herbicides, and regulating the cultivation depth. Herbicides which showed no residual effect by the end of the cropping period(100-120 days for summer crops) and no carry-over effect were alachlor, trifluralin, ethalfluralin, metribuzin, and prometryn. When pendimethalin, metolachlor, linuron, methabenzthiazuron, and simazine were applied at the recommended rate or less, there was no carry -over injury at harvesting time. With doubling the recommended rate, however, the carry-over effect was found in sensitive crops. Napropamide applied at the rate of 300 g a.i./10 a brought about carry-over injury for Italian ryegrass and barley at 140 days in summer crops, whereas the injury was not found in Cruciferae (radish, Chinese cabbage). Nitralin applied at the rate of 150-300 g a.i./10a caused the carry-over injury for Italian ryegrass and barley at 140 days in summer crops. However, there was no injury for Cruciferae.

  • PDF

Decay-Accelerating Factor Differentially Associates With Complement-Mediated Damage in Synovium After Meniscus Tear as Compared to Anterior Cruciate Ligament Injury

  • V. Michael Holers;Rachel M. Frank;Michael Zuscik;Carson Keeter;Robert I. Scheinman;Christopher Striebich;Dmitri Simberg;Michael R. Clay;Larry W. Moreland;Nirmal K. Banda
    • IMMUNE NETWORK
    • /
    • v.24 no.2
    • /
    • pp.17.1-17.16
    • /
    • 2024
  • We have reported that anterior cruciate ligament (ACL) injury leads to the differential dysregulation of the complement system in the synovium as compared to meniscus tear (MT) and proposed this as a mechanism for a greater post-injury prevalence of post traumatic osteoarthritis (PTOA). To explore additional roles of complement proteins and regulators, we determined the presence of decay-accelerating factor (DAF), C5b, and membrane attack complexes (MACs, C5b-9) in discarded surgical synovial tissue (DSST) collected during arthroscopic ACL reconstructive surgery, MT-related meniscectomy, osteoarthritis (OA)-related knee replacement surgery and normal controls. Multiplexed immunohistochemistry was used to detect and quantify complement proteins. To explore the involvement of body mass index (BMI), after these 2 injuries, we examined correlations among DAF, C5b, MAC and BMI. Using these approaches, we found that synovial cells after ACL injury expressed a significantly lower level of DAF as compared to MT (p<0.049). In contrast, C5b staining synovial cells were significantly higher after ACL injury (p<0.0009) and in OA DSST (p<0.039) compared to MT. Interestingly, there were significantly positive correlations between DAF & C5b (r=0.75, p<0.018) and DAF & C5b (r=0.64 p<0.022) after ACL injury and MT, respectively. The data support that DAF, which should normally dampen C5b deposition due to its regulatory activities on C3/C5 convertases, does not appear to exhibit that function in inflamed synovia following either ACL injury or MT. Ineffective DAF regulation may be an additional mechanism by which relatively uncontrolled complement activation damages tissue in these injury states.

The Effects of Perpendicular Needling Laogong ($PC_8$) on the Improvement of Cerebral Hemodynamics in Rats (노궁(勞宮)($PC_8$) 직자(直刺)가 백서(白鼠)의 뇌혈류력학(腦血流力學)에 미치는 영향)

  • Heo, Jin;Kim, Jung-Ho;Kim, Young-Il
    • Journal of Acupuncture Research
    • /
    • v.28 no.4
    • /
    • pp.19-35
    • /
    • 2011
  • Objectives : This study was designed to investigate the effects of acupuncturing $PC_8$ used perpendicular needling method determine the mechanism of action of acupuncturing $PC_8$ by measuring the changes of regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in normal rats. Methods : This study also investigated the effects of acupuncturing $PC_8$ on the change of rCBF in cerebral ischemic rats, and revealed the mechanism of its action. In addition, the effects of acupuncturing $PC_8$ on focal ischemic brain injury was studied in cerebral ischemic rats. Results : 1. Acupuncturing $PC_8$ significantly increase rCBF but decreased MABP in normal rats. 2. Acupuncturing $PC_8$ increased of rCBF was significantly inhibited by pretreatment with indomethacin (1mg/kg, i.p.), an inhibitor of cyclooxygenase in normal rats. 3. Acupuncturing $PC_8$ increased of rCBF was significantly inhibited by pretreatment methylene blue (10 ${\mu}g$/kg, i.p.), an inhibitor of guanylate cyclase in normal rats. 4. Acupuncturing $PC_8$ was significantly improved the rCBF than control group increased unstable in cerebral ischemic rats. 5. Acupuncturing $PC_8$ was not significantly improved the rCBF than control group by pretreatment with indomethacin (1mg/kg, i.p.), an inhibitor of cyclooxygenase in cerebral ischemic rats. 6. Acupuncturing $PC_8$ was significantly increased the rCBF than control group by pretreatment methylene blue ($10{\mu}g$/kg, i.p.), an inhibitor of guanylate cyclase in cerebral ischemic rats. Conclusions : In conclusion, our study suggested that acupuncturing $PC_8$ can increase rCBF in normal state, and improve stability of rCBF in ischemic state. In addition, we suggested that mechanisms related with acupuncturing $PC_8$ was involved in the guanylate cyclase pathway.