• Title/Summary/Keyword: Hyundai Steel

Search Result 267, Processing Time 0.031 seconds

AUTOMATIC MULTITORCH WELDING SYSTEM WITH HIGH SPEED

  • Moon, H.S;Kim, J.S.;Jung, M.Y.;Kweon, H.J.;Kim, H.S.;Youn, J.G.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.320-323
    • /
    • 2002
  • This paper presents a new generation of system for pressure vessel and shipbuilding. Typical pressure vessel and ship building weld joint preparations are either traditional V, butt, fillet grooves or have narrow or semi narrow gap profiles. The fillet and U groove are prevalently used in heavy industries and shipbuilding to melt and join the parts. Since the wall thickness can be up to 6" or greater, welds must be made in many layers, each layer containing several passes. However, the welding time for the conventional processes such as SAW(Submerged Arc Welding) and FCAW(Flux Cored Arc Welding) can be many hours. Although SAW and FCAW are normally a mechanized process, pressure vessel and ship structures welding up to now have usually been controlled by a full time operator. The operator has typically been responsible for positioning each individual weld run, for setting weld process parameters, for maintaining flux and wire levels, for removing slag and so on. The aim of the system is to develop a high speed welding system with multitorch for increasing the production speed on the line and to remove the need for the operator so that the system can run automatically for the complete multi-torch multi-layer weld. To achieve this, a laser vision sensor, a rotating torch and an image processing algorithm have been made. Also, the multitorch welding system can be applicable for the fine grained steel because of the high welding speed and lower heat input compare to a conventional welding process.

  • PDF

Effect of Ti and C Contents on Prior Austenite Grain Size in Ti Added Steels (Ti 첨가강의 Ti와 C 함량에 따른 초기 오스테나이트 입도 변화)

  • Kim, Woo-Jin;Kang, Nam-Hyun;Kim, Sung-Ju;Do, Hyung-Hyup;Nam, Dae-Geun;Cho, Kyung-Mox
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.187-191
    • /
    • 2011
  • Prior austenite grain size plays an important role in the production of high strength hot-rolled steel. This study investigated the effect of Ti and C contents on the precipitates and prior austenite grain size. Steel with no Ti solutes had prior austenite grain size of about 620 ${\mu}m$. The addition of Ti ~ 0.03 wt.% and 0.11 wt.% reduced the prior austenite grain size to 180 ${\mu}m$ and 120 ${\mu}m$, respectively. The amount of Ti required to significantly decrease the prior austenite grain size was in the range of 0.03 wt.%. However, the amount of carbon required to significantly decrease the prior austenite grain size was not present from 0.04 wt.% to 0.12 wt.%. Oxides of Ti ($Ti_2O_3$) were observed as the Ti content increased to 0.03 wt.%. The specimen containing 0.11 wt.% of Ti exhibited the complex carbides of (Ti, Nb) C. The formation of Ti precipitates was critical to reduce the prior austenite grain size. Furthermore, the consistency of prior austenite grain size increased as the carbon and Ti contents increased. During the reheating process of hot-rolled steel, the most critical factor for controlling the prior austenite grain size seems to be the presence of Ti precipitates.

Surface and Tribological Characteristics of Air-cooled and Oil-cooled AISI 4140 Steel (냉각공정에 따른 AISI 4140 강의 표면 및 트라이볼로지 특성)

  • Cho, Hak-Rae;Lee, Sang Don;Son, Jung Ho;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.160-165
    • /
    • 2016
  • AISI 4140 steel is widely used in various mechanical components owing to its superior mechanical properties. Surface hardening techniques are often used to further improve the properties, particularly for applications with moving components. The aim of this research is to understand the effect of heat treatment process on surface properties and tribological characteristics of AISI 4140 steel. In this work, we prepare two different AISI 4140 steel specimens- one cooled by air and one by oil- and determine surface properties such as surface topography and roughness using a confocal microscope. We also observe the cross-sections of the specimens using a scanning electron microscope to understand the difference in the material structure. In addition, we assess the hardness with respect to the distance from the surface using a micro-Vickers hardness tester. After characterizing the surfaces of the specimens, we investigate the wear characteristics of the specimens under hydrodynamic lubrication. The results show the presence of grooves on the surface of the oil-cooled specimens. It is likely that such grooves are formed during the cooling process using the oil. However, we observe no other significant differences in the surface properties of the specimens. The wear test results show the occurrence of severe wear on the oil-cooled specimens, which may be due to the groove formed on the surface. The results of this work may be helpful to improve surface properties using surface hardening techniques from a tribological perspective.

Effects of Coiling Temperature and Carbides Behavior on Stretch-flangeability for 980MPa Hot-rolled Steels (980 MPa급 열연강의 권취온도와 탄화물 거동에 따른 신장플랜지성)

  • Chun, Eun-Joon;Lee, Ju-Seung;Do, Hyeonghyeop;Kim, Seong-Ju;Choi, Yoon-Suk;Park, Yong-Ho;Kang, Namhyun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.487-493
    • /
    • 2012
  • To analyze the factors on stretch-flangeability for 980 MPa-grade hot-rolled steels, two types of steels (Fe-Cr and Fe-Mo) were manufactured by hot-rolling. Manufactured steels at the low coiling temperature, such as 400 and $500^{\circ}C$, had poor stretch-flangeability due to un-uniformly distributed carbides and a large deviation of interphase hardness. However, when the coiling temperature was set at $650^{\circ}C$ with Fe-Cr steel, 998 MPa of ultimate tensile strength, 19% of total elongation and 65% of the hole expanding ratio were achieved by microstructural constituents of polygonal ferrite (PF) and granular ferrite (GF) dispersed with fine carbides (<50 nm). Therefore, the material to attain 980 MPa with superior formability was the Fe-Cr steel that was precipitation-hardened in polygonal ferrite and granular ferrite at the coiling temperature $650^{\circ}C$.

Improvement of Penetration Characteristics by Plasma Augmented Laser Welding of Small Diameter Stainless Steel Tubes (PALW을 이용한 소경 스테인리스강 튜브의 용입특성 개선)

  • Hwang Jae-Ryeon;Yoon Suk-Hwan;Na Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.30-35
    • /
    • 2004
  • Laser welding is obviously an attractive method to join small, thin parts such as small stainless steel tubes, but it is very sensitive to the joint clearance and tolerance, and this makes laser welding difficult to obtain consistent welding qualities over time. Recently, Plasma Augmented Laser Welding(PALW) is being developed to solve these problems. In this study, plasma arc welding(PAW) was introduced to join conventional V-grooved butt joint of thin stainless steel strips using single laser heat source in manufacturing small stainless steel tubes. The effect of the welding speed enhancement is investigated by the experiments. Effects of welding directions, distance between the heat sources and intensity of arc heat source on the optimal welding speed was investigated. Through this research, it was confirmed that PALW process has higher welding speed and robustness than laser welding process.

A Case Study of Improving Operations Efficiency on the Steel Stockyard in Shipbuilding (강재적치장 운영 효율화 방안에 관한 사례연구)

  • Park, Chang-Kyu;Park, Ju-Chull
    • IE interfaces
    • /
    • v.18 no.2
    • /
    • pp.167-177
    • /
    • 2005
  • As the largest shipbuilding company in the world and the leader in the Korean merchant shipbuilding industry, Hyundai Heavy Industries is currently struggling to carry out intensive productivity improvement efforts in order to be the global merchant shipbuilding market leader by surpassing in the competition with Japan and being free from the defiance of China armed with very cheap labor costs. This paper introduces the academy-and-industry collaborative project, a part of the productivity improvement efforts, which has conducted on the steel stockyard operations. As a pilot project that researches for the way of improving the stockyard operations and ignites further projects on the stockyard operations, the project defined the stockyard operations, measured current situations, and analyzed management dilemmas. In addition, the project developed the steel stockyard operations simulator. Besides that the simulator is used by the operations manager who has heavily relied on his work-experienced intuition when making decisions, this paper expects that further projects on the stockyard operations utilize the simulator for their own purposes.

Finite Element Analysis on Hydration Heat of Concrete under the Influence of Reinforcing Steel Bars

  • Yoon, Dong-Yong;Song, Hyung-Soo;Min, Chang-Shik
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.33-39
    • /
    • 2007
  • The magnitude and distribution of hydration heat of concrete structures are related to the thermal properties of each component of the concrete, the initial temperature, the type of formwork, and the ambient temperature of exposed surfaces. Even though the reinforcing steel bar has completely different thermal properties, it has been excluded in the thermal analysis of the concrete structures for uncertain reasons. In this study, finite element analysis was performed on the concrete structures reinforced with steel bars in order to investigate the effect of reinforcing steel bars on the temperature and stress distribution due to the heat of hydration. As the steel content increased, the maximum temperature and the difference in the internal-external temperature decreased by 32.5% and 10.0%, respectively. It is clearly shown that the consideration of the influence of reinforcing steel bars in the heat of hydration analysis is necessary to obtain realistic solutions for the prediction of the maximum temperature and stresses of concrete structures.

A Study on the Development of Electric Resistance Welding of DP780 Grade Steel for Hydroforming Tube (하이드로포밍용 DP780MPa급 강판의 전기저항용접 강관 개발에 관한 연구)

  • Park, Sungpill;Kwon, Yongjai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.279-286
    • /
    • 2015
  • To achieve lightweight design, research & development of various lightweighting technologies such as hydroforming are underway worldwide. In the case of hydroforming, application of ultra high strength steel is essential for weight reduction of the car. However, considering common high-strength carbon steel, it is not suitable to the actual hydroformed parts since the lack of formability. DP steel offers an outstanding combination of strength and formability as a result of their microstructure. DP steel has high strength and good formability but it's difficult to secure stable quality of welding section because of softening of weld section and chemical composition. Therefore, most of companies use LASER welding when making high strength tube. Electric resistance welding is excellent production method for steel tube manufacturing considering the productivity. Optimum electric resistance welding technology is needed to be developed for application of high strength hydroformed parts using DP steel. This study is comprehensive research & development from electric resistance welding to actual formabililty evaluation.

A Study on the Prediction of Shrinkage and Residual Stress for the HY-100 Weldment Considering the Phase Transformation (상 변태를 고려한 HY-100강 용접부의 수축 및 잔류응력 예측에 관한 연구)

  • Lee, Hee-Tae;Shin, Sang-Beom
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.42-48
    • /
    • 2007
  • For high performance and structural stability, application of high strength steel has continuously increased. However, the change of the base metal gives rise to problems with the accuracy management of the welded structure. It is attributed to the martensite phase transformation of the high strength low alloy steel weldment. The purpose of this study is to establish the predictive equation of transverse shrinkage and residual stress for the HY-100 weldment. In order to do it, high speed quenching dilatometer tests were performed to define a coefficient of thermal expansion(CTE) at the heating and cooling stage of HY-100 with various cooling rates. Uncoupled thermal-mechanical finite element(FE) models with CTE were proposed to evaluate the effect of the martensite phase transformation on transverse shrinkage and residual stresses at the weldment. FEA results were verified by comparing with experimental results. Based on the results of extensive FEA and experiments, the predictive equation of transverse shrinkage and longitudinal shrinkage force at the HY-100 weldment were formulated as the function of welding heat input/in-plane rigidity and welding heat input respectively.

Front Aluminum Subframe of High Level Vacuum Die-casting (고진공 다이캐스팅 공법 적용한 알루미늄 서브프레임 개발)

  • Cho, Young-Gun;Lim, Tae-Seong;Jang, Sang-Gil;Cho, Cheol-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.52-59
    • /
    • 2012
  • The subframe has been generally manufactured by using stamped steel material. Recently, automotive designers are considering aluminum as lightweight material. This paper describes the development process of an aluminum subframe which is made by high level vacuum die casting process, which is beneficial for minimizing gas contents and material properties. The weight of manufactured subframe is reduced by 4kg with the comparison of steel subframe. The aluminum subframe is packaged for the current vehicle layout and the imposed requirement is to attain a better structural performance that is evaluated in terms of mounting stiffness, noise and vibration, and endurance performance. The NVH evaluation results show that sound level is decreased by 8dB with the help of high roll-rod mounting stiffness as well as high structural modes.