Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.4.187

Effect of Ti and C Contents on Prior Austenite Grain Size in Ti Added Steels  

Kim, Woo-Jin (Department of Materials Science and Engineering, Pusan National University)
Kang, Nam-Hyun (Department of Materials Science and Engineering, Pusan National University)
Kim, Sung-Ju (Technical Research Laboratories, Hyundai steels)
Do, Hyung-Hyup (Technical Research Laboratories, Hyundai steels)
Nam, Dae-Geun (Korea Institute of Industrial Technology)
Cho, Kyung-Mox (Department of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.21, no.4, 2011 , pp. 187-191 More about this Journal
Abstract
Prior austenite grain size plays an important role in the production of high strength hot-rolled steel. This study investigated the effect of Ti and C contents on the precipitates and prior austenite grain size. Steel with no Ti solutes had prior austenite grain size of about 620 ${\mu}m$. The addition of Ti ~ 0.03 wt.% and 0.11 wt.% reduced the prior austenite grain size to 180 ${\mu}m$ and 120 ${\mu}m$, respectively. The amount of Ti required to significantly decrease the prior austenite grain size was in the range of 0.03 wt.%. However, the amount of carbon required to significantly decrease the prior austenite grain size was not present from 0.04 wt.% to 0.12 wt.%. Oxides of Ti ($Ti_2O_3$) were observed as the Ti content increased to 0.03 wt.%. The specimen containing 0.11 wt.% of Ti exhibited the complex carbides of (Ti, Nb) C. The formation of Ti precipitates was critical to reduce the prior austenite grain size. Furthermore, the consistency of prior austenite grain size increased as the carbon and Ti contents increased. During the reheating process of hot-rolled steel, the most critical factor for controlling the prior austenite grain size seems to be the presence of Ti precipitates.
Keywords
prior austenite grain size; hot rolled steel; precipitate; titanium; carbon;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 R. D. K. Misra, S. W. Thompson, T. A. Hylton and A. J. Boucek, Metall. Mater. Trans., 32A, 745 (2001).
2 R. D. K. Misra, K. K. Tenneti, G. C. Weatherly and G. Tither, Metall. Mater. Trans., 34A, 2341 (2003).
3 S. G. Hong, H. J. Jun, K. B. Kang and C. G. Park, Scripta. Mater., 48, 1201 (2003).   DOI   ScienceOn
4 H. -J. Kestenbach, J. A. Rodrigues and J. R. Dermonde, Mater. Sci. Tech., 5, 29 (1989).   DOI   ScienceOn
5 J. R. Wilcox, R. W. K. Honeycombe, Mater. Sci. Tech., 3, 849 (1987).   DOI   ScienceOn
6 Y.Jiang, Y. K. Park, O. Y. Lee, Kor. J. Mater. Res., 18, 65 (2008).   DOI   ScienceOn
7 S. Maropoulos, S. Karagiannis and N. Ridley, Mater. Sci. Eng., 483, 735 (2008).   DOI   ScienceOn
8 H. J. Jun, K. B. Kang and C. G. Park, Scripta Mater., 49, 1081 (2003).   DOI   ScienceOn
9 J. Reiter, G. Bernhard and H. Presslinger, Mater. Char., 59, 737 (2008).   DOI   ScienceOn
10 J. G. Speer and S. S. Hansen, Metall. Mater. Trans., 20A, 25 (1989).
11 J. T. Michalak and H. Hu, Metall. Mater. Trans., 10A, 975 (1979).
12 R. D. K. Misra, G. C. Weatherly, J .E. Hartmann and A. J. Boucek, Mater. Sci. Tech., 17, 1119 (2001).   DOI   ScienceOn