• Title/Summary/Keyword: Hysteretic behavior model

Search Result 227, Processing Time 0.024 seconds

Nonlinear hysteretic behavior of hybrid beams consisted of reinforced concrete and steel (철근콘크리트와 철골조로 이루어진 혼합구조보의 비선형 이력거동에 관한 연구)

  • 이은진;김욱종;문정호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.19-26
    • /
    • 1999
  • This paper describes an analytical study on nonlinear hysteretic behavior of hybrid steel beam with reinforced concrete ends. Two types of analytical model, Polygonal Model[PM] and Hybrid Model[HM], were used to represent the nonlinear hysteretic behavior PM used three parameters, HM used an additional parameter to consider the initial stiffness reduction. The parameters calibrated comparing the hysteretic performance obtained from experiments. The purpose of this study is to develop an analytical model which can take into account the initial stiffness reduction of the hybrid members and to represent exactly the hysteretic performance for the hybrid structures with RC and steel. The analytical study showed PM tends to overestimate initial stiffness and strength. However, HM which is capable to consider the initial stiffness reduction gave good prediction on initial stiffness, post-yielding performance, strength, pinching response and so on.

  • PDF

Improvement of hysteretic constitutive model for reinforcements considering buckling

  • Weng Weipeng;Xie Xu;Wang Tianjia;Li Shuailing
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.57-67
    • /
    • 2023
  • The buckling of longitudinal reinforcements under seismic loading accelerates the degradation of the bearing capacity of reinforced concrete columns. The traditional hysteretic constitutive model of reinforcement, which does not consider buckling, usually overestimates the seismic performance of pier columns. Subsequent researchers have also proposed many models including the buckling effects. However, the accuracy of these hysteretic constitutive models proposed for simulating the buckling behavior is inadequate. In this study, based on their works, the influence of historical events on buckling is considered, the path of the re-tensioning phase is corrected by adjusting the boundary lines, and the positions of the onset buckling point and compressive buckling path during each buckling deformation are corrected by introducing correction parameters and a boundary line. A modified hysteretic constitutive model is obtained, that can more accurately reflect the buckling behavior of reinforcements. Finally, a series of hysteresis tests of reinforcements with different slenderness ratios were then conducted. The experimental results verify the effectiveness of the proposed modified model. Indicating that the modified model can more accurately simulate the equivalent stress-strain relationship of the buckling reinforcement segment.

Hysteretic Behavior Characteristics of SM490-TMC Steel Column (SM490-TMC 강재를 적용한 기둥부재 이력거동의 특성)

  • Chang, Kyong Ho;Jang, Gab Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.833-840
    • /
    • 2006
  • In design of steel column member using TMCP steels, hysteretic behavior characteristics of steel column must be clarified. To predict hysteretic behavior of steel column using TMCP steels, a cyclic plasticity model is necessary which can consider the mechanical characteristics and stress-strain relationship of TMCP steels. In this paper, a cyclic plasticity model of SM490-TMC was formulated based on monotonic and cyclic loading tests. The formulated cyclic plasticity model was applied to 3-dimensional finite element analysis. Hysteretic behavior characteristics of steel circular column and H-section column using SM490-TMC was presented by carrying out numerical analysis. Also, influence of SM490-TMC on hysteretic behavior of steel column was presented by comparing analysis results both SM490 and SM490-TMC steel column.

Experimental hysteretic behavior of in-plane loaded reinforced grouted multi-ribbed aerated concrete blocks masonry walls

  • Li, Sheng-Cai;Dong, Jian-Xi;Li, Li-Feng
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.95-112
    • /
    • 2012
  • In order to analyze the experimental hysteretic behavior of the in-plane loaded reinforced grouted multi-ribbed aerated concrete blocks masonry walls (RGMACBMW), we have carried out the pseudo static testing on the six specimens of RGMACBMW. Based on the test results and shear failure characteristics, the shear force hysteretic curves and displacement envelope curves of the models were obtained and discussed. On the basis of the hysteretic curves a general skeleton curve of the shear force and displacement was formed. The restoring model was adopted to analyze the seismic behavior and earthquake response of RGMACBMW. The deformation capacity of the specimens was discussed, and the formulas for calculating the lateral stiffness of the walls at different loading stages were proposed as well. The average lateral displacement ductility factor of RGMACBMW calculated based on the test results was 3.16. This value illustrates that if the walls are appropriately designed, it can fully meet the seismic requirement of the structures. The quadri-linear restoring models of the walls degradation by the test results accurately reflect the hysteretic behaviors and skeleton curves of the masonry walls. The restoring model can be applied to the RGMACBMW structure in earthquake response analysis.

Analytic Hysteretic Model of Reinforced Concrete Members (철근콘크리트 부재의 해석적 이력모델)

  • 정영수
    • Computational Structural Engineering
    • /
    • v.4 no.1
    • /
    • pp.133-142
    • /
    • 1991
  • A mathematical hysteretic model has been developed to analytically reproduce the experimental hysteretic behavior of reinforced concrete members. This mode[2, 3] can simulate the nonlinear response of reinforced concrete members with sufficient accuacy, which are characterized by following important hysteretic behaviors: stiffness degradation, strength deterioration and shear effect. In order to illustrate the capabilities of the proposed mathematical model, numerical examples are presented with the reproduction of experimental hysteretic behavior of RC members and frames.

  • PDF

A total strain-based hysteretic material model for reinforced concrete structures: theory and verifications

  • Yun, Gun-Jin;Harmon, Thomas G.;Dyke, Shirley J.;So, Migeum
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.217-241
    • /
    • 2008
  • In this paper, a total strain-based hysteretic material model based on MCFT is proposed for non-linear finite element analysis of reinforced concrete structures. Although many concrete models have been proposed for simulating behavior of structures under cyclic loading conditions, accurate simulations remain challenging due to uncertainties in materials, pitfalls of crude assumptions of existing models, and limited understanding of failure mechanisms. The proposed model is equipped with a fully generalized hysteresis rule and is formulated for 2D plane stress non-linear finite element analysis. The proposed model has been formulated in a tangent stiffness-based finite element scheme so that it can be used for most general finite element analysis packages. Moreover, it eliminates the need to check that tensile stresses can be transmitted across a crack. The tension stiffening model is a function of the bar orientation and any orientation can be accommodated. The proposed model has been verified with a series of experimental results of 2D RC planar panels. This study also demonstrates how parameters of the proposed model associated with cyclic damage modeling influences the pinched cyclic shear behavior.

Analysis of Hysteretic Behavior of R/C Members subjected to Load Reversals - Single component model having the finite size of plastic regions - (반복하중을 받는 철근콘크리트 부재의 이력거동 해석 -유한한 소성력을 갖는 일원성분 모델을 사용하여-)

  • 김윤일;이리형;서수연;천영수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.6-11
    • /
    • 1990
  • Inelastic behavior of reinforced concrete members is very complex and affected by many factors. Therefore, though using the finite element method which is good to predict the response of R/C member, it has to be proceeded to model these factors appropriately which have influence on the behavioral characteristics of reinforced concrete members. The proposed model consists of the physical single component model having the finite size of plastic regions and the hysteretic rules, by regressing experimental data, which can idealize the hysteretic behavior of R/C member under inelastic cyclic loads. This study confirms the accuracy of the developed analytical model through comparison with the test results of R/C members having a variety of shear-to-depth ratio and maximum shear stress.

  • PDF

Hysteretic Behavior of Retrofitted RC Bridge Piers with Lap Spliced Longitudinal Steels (주철근 겹침이음 및 보강된 RC교각의 이력거동)

  • 이대형;정영수;박창규;박진영;송희원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.121-126
    • /
    • 2003
  • The objective of this research is to evaluate of seismic performance for reinforced concrete bridge piers with lap splices of longitudinal reinforcement steels using predicting of nonlinear hysteric behavior. For the purpose, enhanced analytical trilinear hystretic model has been proposed to simulate the force-displacement hysteretic curve of RC bridge piers under repeated reversal loads. The moment capacity and corresponding curvature in the plastic hinge have been determined, and the enhanced hysteretic behavior model by five different kinds of branches has been proposed for modeling the stiffness variation of RC section under cyclic loading. The strength and stiffness degradation index are introduced to compute the hysteretic curve for various confinement steel ratios, In addition, the modified curvature factor has been introduced to forecast of seismic performance of longitudinal steel lap spliced and retrofitted specimens. The results of this research will be useful to predict of seismic performance for longitudinal steel with lap spliced and its retrofitted specimens.

  • PDF

A Study on the Hysteretic Characteristics of Self-Centering Disc Spring Brace (셀프 센터링이 가능한 디스크 스프링 브레이스의 이력특성에 관한 연구)

  • Park, Byung-Tae;Shin, Dong-Hyeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.89-96
    • /
    • 2023
  • The seismic retrofits of existing structures have been focused on the control of structural responses which can be achieved by providing displacement capacity through inelastic ductile action at supplemental devices. Due to their hysteretic characteristics, it is expected to sustain damage through repeated inelastic behaviors including residual deformation which might increase repair costs. To solve such drawbacks of existing yielding devices, this study proposes a self-centering disc spring brace that sustains large axial deformation without structural damage while providing stable energy dissipation capacity. The hysteretic behaviors of suggested brace are first investigated based on the quasi-static cyclic test procedure. Experimental results present the effective self-centering behavior and an analytical model is then suggested in order to reasonably capture the flag-shaped hysteretic behavior of the disc spring brace.

Nonlinear Hysteretic Behavior of Hybrid Steel Beams with Reinforced Concrete Ends (단부 철근콘크리트 중앙부 철골조로 이루어진 혼합구조부의 비선형 이력거동)

  • 이은진;김욱종;문정호;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.379-387
    • /
    • 2002
  • This paper presents an analytical model on nonlinear hysteretic behavior of hybrid steel beam with reinforced concrete ends. The modeling method and appropriate coefficients with IDARC2D were proposed from the comparison with previous test results. Since the polygonal model of IDARC2D nay overestimate, new analytical model with the initial stiffness reduction coefficient was proposed. The hysteretic coefficients for the analysis of the hybrid steel beam with reinforced concrete ends were also presented. The analytical results were compared with previous experiments. The initial stiffness and the strength were predicted with less than 5% error and 10% error, respectively.