• Title/Summary/Keyword: Hysteresis switch

Search Result 24, Processing Time 0.024 seconds

The Design, Fabrication, and Characteristic Experiment for Control Rod Position Indicator Using Reed Switch in System-Integrated Modular Advanced Reactor (리드스위치를 이용한 일체형원자로용 제어봉 위치지시기 설계 제작 및 특성해석)

  • Hur, Hyung;Kim, Jong-In;Kim, Kern-Jung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.452-461
    • /
    • 2003
  • The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. A survey on the RSPT(Reed Switch Position Transmitter) type control rod position indicator system and its actual implementation in the existing nuclear power plants in Korea was performed first. The control rod position indicator having the high performance for SMART was developed on the basis of RSPT technology identified through the survey. The arrangement of permanent magnet and reed switches is the most important procedure in the design of control rod position indicator. The hysteresis of reed switches is one of the important factors in a repeat accuracy of control rod position indicator as well. This paper investigates efficiency of the magnetic flux concentrator and the hysteresis using FEM and verified differences in physicals characteristics by comparing the results of FEM and those of the experiment. As a result, it is shown that the characteristics of prototype control rod position indicator have a good agreement with the results of FEM.

Comparative Analysis of Flux-Reversal Motors with Six-Switch and Four-Switch Converters

  • Kang, Hyun-Soo;Lee, Byoung-Kuk;Kim, Tae Heoung
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.50-56
    • /
    • 2013
  • In this paper, the 6-switch inverter for the Flux-Reversal Motor (FRM) has been presented and compared to the 4-switch inverter for the FRM, which is more popular in cost effective applications. To analyze the FRM, we adopted the two-dimensional time-stepped voltage source finite element method (FEM) that uses the actual pulse width modulation (PWM) voltage waveforms as the input data. As the FRM characteristic analysis of actual pwm voltage input, the torque ripples and iron losses (eddy current and hysteresis loss) of the FRM can be precisely calculated. With the simulated and experimental results, the performance and limitations of the 4-switch FRM which is the cost effective drive compared to the 6-switch FRM drive are provided in more detail.

Reduction Chattering Error of Reed Switch Sensor for Remote Measurement of Water Meter (Reed Switch 센서를 이용한 원격 검침용 상수도 계량기에서 Chattering 오차 감소 방안 연구)

  • Ayurzana, Odgerel;Kwon, Jong-Won;Park, Yong-Man;Koo, Sang-Jun;Kim, Hie-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.377-379
    • /
    • 2007
  • To reduce the chattering errors of reed switch sensors used for automatic remote measurement of water supply system, a reed switch sensor was analyzed and improved. The operation of reed switch sensors can be described as a mechanical contact by approximation of permanent magnet piece to generate an electrical pulse. The reed switch sensors are used in measurement application by detecting the rotational or translational displacement. To apply for flow measurement devices, the reed switch sensors should keep high reliability. They are applied for the electronic digital type of water flow meters. The reed switch sensor is just installed simply on the mechanical type flow meter. A small magnet is attached on a pointer of the water meter counter rotor. Inside the reed sensor, two steel leaf springs make mechanical contact and apart as rotation of flow meter counter. The counting electrical contact pulses can be converted as the water flow amount. The MCU sends the digital flow rate data to the server using the wireless communication network. But it occurs data difference or errors by chattering noise. The reed switch sensor contains chattering error by it self at the force equivalent position. The vibrations such as passing car near to the switch sensor installed location. In order to reduce chattering error, most system uses just software methods for example using filter and also statistical calibration methods. The chattering errors were reduced by changing leaf spring structure using mechanical hysteresis characteristics.

  • PDF

Multistage Inverters Control Using Surface Hysteresis Comparators

  • Menshawi, Menshawi K.;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.59-69
    • /
    • 2013
  • An alternative technique to control multilevel inverters with vector approximations has been presented. The innovative control method utilizes specially designed two-dimensional hysteresis comparators to simplify the implementation and improve the resultant waveform. The multistage inverter designed with maximum number of levels is operated in such a way to approximate the reference voltage vector by exploiting the large number of multilevel inverter vectors. A three-stage inverter with the main high voltage stage made of three phase, six-switch and singly-fed inverter is considered for application to the proposed design. The proposed control concept is to maintain a higher voltage stage state as long as it can lead to a target vector. High and medium voltage stages controllers are based on surface hysteresis comparators to hold the switching state or to perform the necessary change to achieve its reference voltage with minimal switching losses. The low voltage stage controller is designed to approximate the target reference voltage to the nearest inverter vector using the nearest integer rounding and adjustment comparators. Model simulation and prototype test results show that the proposed control technique clearly outperforms the previous control methods.

Low-Cost Position Sensorless Switched Relutance Motor Drive Using a Single-Controllable Switch Converter

  • Yang, Hyong-Yeol;Kim, Jae-Hyuck;Krishnan, R.
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • Elimination of rotor position sensors mechanically coupled with the rotor shaft is attractive to variable speed drives primarily due to increased system reliability and cost reduction. In this regard, search for a simple and robust position sensorless control has been intensified in past few years specifically for low-cost, high-volume applications such as home appliances. This paper describes a new parameter insensitive position sensorless control for switched reluctance motor (SRM) drives satisfying such a need in this market segment. Two consecutive switch-on times of the controllable switch in hysteresis current control are compared to estimate the rotor position and speed. The proposed sensorless control algorithm is very simple to implement since it does not depend on extensive computation or any additional hardware. In addition, the proposed method is robust in that its dynamic performance is least affected by system parameter variations. The proposed approach is demonstrated on a single-controllable-switch-converter-driven SRM with two-phases that lends itself to a system with low cost and compact packaging which comes close to the intended applications. Analysis and simulation results followed by experimental verification are presented to demonstrate the feasibility of the proposed sensorless control method.

Control Method for Fault-Tolerant Active Power Filters

  • Zhang, Chenyu;Zheng, Jianyong;Mei, Jun;Deng, Kai;Zhou, Fuju
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.796-805
    • /
    • 2015
  • New direct and indirect current control methods for a fault-tolerant active power filter topology are presented in this paper. Since a three-phase four-switch topology has a phase bridge current which cannot be directly controlled, a hysteresis control method in the α-β plane which controls the three-phase current in the two-phase stationary coordinate system is proposed. The improved SVPWM algorithm is able to eliminate the operation of the trigonometric functions in the traditional algorithm by rotating the α-β coordinates and alternating the sequence of the output vectors, which in turn simplifies the algorithm and reduces the switching frequency. The selection of the DC-side reference voltage and DC-side capacitor equalization strategy are also discussed. Simulation and experiments demonstrate that the proposed control method is correct and feasible.

Sensorless Control for Switched Reluctance Motor by Comparing Two Consecutive Switch-on times (인접한 스위치 온 타임 비교를 통한 SRM의 센서리스 제어)

  • Yang, Hyong-Yeol;Kim, Jae-Hyuck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.185-191
    • /
    • 2010
  • This paper describes a new position sensorless control for the switched reluctance motor (SRM) by monitoring the rate of change of current with respect to the inductance variation. Two consecutive switch-on times in hysteresis current control are compared to calculate the rate of change of current and hence to estimate the rotor position and speed. The proposed sensorless control algorithm is simple to implement as it does not depend on extensive computation or additional hardware. Simulation and experimental results are presented to demonstrate the feasibility of the proposed sensorless control method.

A CRPWM Boost Type AC/DC Converter based on Modified Trapezoidal PWM (Modified Trapezoidal PWM을 베이스로 한 CRPWM Boost Type AC/DC Converter)

  • 권영원;노의철;김인동;김만고;전성즙;조철제;문성득
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.342-345
    • /
    • 1999
  • This paper describes a current regulated PWM boost type rectifier based on modified trapezoidal PWM. Each switch of a converter has no switching for one third period of a fundamental line current. Therefore, the switching loss of the proposed scheme is less than that of the hysteresis current controller. Operating principle is described and controller. Operating principle is described and simulations and experiments are carried out.

  • PDF

Torque Reduction of SRM Using An Advanced Direct Instantaneous Torque Control Scheme (개선된 직접순시토크제어기법을 이용한 SRM의 토크리플 저감)

  • Wang, Huijun;Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.148-149
    • /
    • 2007
  • In this paper, an advanced torque control scheme of SRM using DITC(Direct Instantaneous Torque Control) and PWM(pulse width modulation) is investigated. The proposed DITC-PWM regulates a duty ratio of the phase switch according to the torque error and simple control rules of DITC without any hysteresis bandwidth. The proposed control method is verified by the simulations and experimental results.

  • PDF

Reduced Switch Count Topology of Current Flow Control Apparatus for MTDC Grids

  • Diab, Hatem Yassin;Marei, Mostafa Ibrahim;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1743-1751
    • /
    • 2016
  • The increasing demand for high voltage DC grids resulting from the continuous installation of offshore wind farms in the North Sea has led to the concept of multi-terminal direct current (MTDC) grids, which face some challenges. Power (current) flow control is a challenge that must be addressed to realize a reliable operation of MTDC grids. This paper presents a reduced switch count topology of a current flow controller (CFC) for power flow and current limiting applications in MTDC grids. A simple control system based on hysteresis band current control is proposed for the CFC. The theory of operation and control of the CFC are demonstrated. The key features of the proposed controller, including cable current balancing, cable current limiting, and current nulling, are illustrated. An MTDC grid is simulated using MATLAB/SIMULINK software to evaluate the steady state and dynamic performance of the proposed CFC topology. Furthermore, a low power prototype is built for a CFC to experimentally validate its performance using rapid control prototyping. Simulation and experimental studies indicate the fast dynamic response and precise results of the proposed topology. Furthermore, the proposed controller offers a real solution for power flow challenges in MTDC grids.