• Title/Summary/Keyword: Hysteresis damping

Search Result 95, Processing Time 0.027 seconds

The Behavior of Carbon on the Damping Characteristics of Fe-5.7% Al Alloy (Fe-5.7% Al 합금의 제진특성에 미치는 탄소의 거동)

  • Lee, J.H.;Lee, M.J.;Lee, K.H.;Shin, M.C.
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.195-203
    • /
    • 1995
  • Carbon and small amounts of alloying elements were added in Fe-5.7% Al ferromagnetic damping alloy. The specific damping capacities(SDC) of these alloys were investigated in relation to the grain size and the magnetic hysteresis loops. The behavior of carbon was analysed by XRD and EDS. These alloys showed characteristic damping nature of ferromagnetic damping materials. The alloying elements decreased SDC and especially the carbon was remarkable. The SDC was observed to be not related with the grain size but with the magnetic hysteresis loop area. The remarkable decrease of SDC by carbon addition was attributed to the locking migration of $90^{\circ}$ magnetic domain wall by the interstitial carbon in Fe-Al solid solution. However, the carbides also seems to decrease the SDC.

  • PDF

An Experimental Study on the Damping Capacity of Lead Rubber Bearing with High Lead-plug Area Ratio (납-플러그 면적비가 큰 LRB의 감쇠능력에 관한 실험적 연구)

  • Choi, Jung-Ho;Kim, Woon-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.217-224
    • /
    • 2009
  • Many engineering researches are performed to ensuring structural safety from earthquake. In this study, the damping capacity of LRB(lead rubber bearing) with high lead-plug area ratio was examined by hysteresis loop from experiments. The displacement controlled tests were performed for 12 specimens designed in 2 types by lead-plug area ratio as main parameter. Each coupled specimens were tested by 3 times sinusoidal loads with different loading velocities. From the experimental results, LRB with high lead-plug area ratio has sufficient damping ratio for reducing horizontal seismic load to structures.

Dynamic loading tests and analytical modeling for high-damping rubber bearings

  • Kyeonghoon Park;Taiji Mazda;Yukihide Kajita
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.161-175
    • /
    • 2023
  • High-damping rubber bearings (HDRB) are commonly used as seismic isolation devices to protect civil engineering structures from earthquakes. However, the nonlinear hysteresis characteristics of the HDRB, such as their dependence on material properties and hardening phenomena, make predicting their behavior during earthquakes difficult. This study proposes a hysteretic model that can accurately predicts the behavior of shear deformation considering the nonlinearity when designing the seismic isolation structures using HDR bearings. To model the hysteretic characteristics of the HDR, dynamic loading tests were performed by applying sinusoidal and random waves on scaled-down specimens. The test results show that the nonlinear characteristics of the HDR strongly correlate with the shear strain experienced in the past. Furthermore, when shear deformation occurred above a certain level, the hardening phenomenon, wherein the stiffness increased rapidly, was confirmed. Based on the experimental results, the dynamic characteristics of the HDR, equivalent stiffness, equivalent damping ratio, and strain energy were quantitatively evaluated and analyzed. In this study, an improved bilinear HDR model that can reproduce the dependence on shear deformation and hardening phenomena was developed. Additionally, by proposing an objective parameter-setting procedure based on the experimental results, the model was devised such that similar parameters could be set by anyone. Further, an actual dynamic analysis could be performed by modeling with minimal parameters. The proposed model corresponded with the experimental results and successfully reproduced the mechanical characteristics evaluated from experimental results within an error margin of 10%.

Determination of Damping Modification Factor in RC Structures Due to Energy Absorption Efficiency (에너지 흡수효율에 의한 철근콘크리트 구조물의 감쇠비 수정계수 결정)

  • 김장훈;좌동훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.161-166
    • /
    • 2002
  • The modification factor( k-factor) of equivalent damping ratio utilized in the current state-of-the-practice to account for the imperfection of reinforced concrete structures in hysteresis loop is investigated. From this, it is found that the current modification factor does not include the effect of cyclic loading, one of the important characteristic properties of earthquake loading. This could be taken into account by considering the energy absorption efficiency based on the cummulative plastic deformation. From the study, it is suggested that the current approach for the modification factor for the equivalent damping ratio should be reformed.

  • PDF

A Study on the Hysteresis Effects on a Passenger Car Driveline (승용차 동력전달계의 히스테리시스 영향에 관한 연구)

  • Kim, Young-Heub;Park, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.140-146
    • /
    • 2008
  • A friction damper is installed in the passenger car driveline in order to dissipate the torsional vibration energy. The frictional damping hysteresis has considerable influences on the driveline vibration characteristics and, therefore, it is one of the most important parameters in the damper design. To investigate the hysteresis effects on the driveline vibration, a dynamic model of the passenger car driveline with manual transmission has developed, and simulations were executed on the several different driving conditions for various hysteresis values. To verify the model, vehicle tests are preformed and the test data were compared with the simulations results. The simulation and test results show good agreements and the model could be used to determine the optimal hyteresis values in early design stage of the damper.

Dynamic Characteristics of Eddy Current Damper (와전류 댐퍼의 동적특성)

  • Kwag, Dong-Gi;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.947-951
    • /
    • 2007
  • This paper is concerned with a new concept for the damper without neither a coil spring nor fluid. The new damper concept consists of the permanent magnets and the cylinder of the conducting material. The opposite pole magnets produces the repulsive forces and this is substituted for the coil spring. The relative motion between the magnets and conducting cylinder produces eddy currents thus resulting in the electromagnetic force, which turns out to be the damping force thus and is substituted for a damping fluid. This damper is called the eddy current damper(ECD). The important advantage of the proposed ECD is that it does not require the damping fluid and any external power and is non-contacting and relatively insensitive to temperature. In the present study, the proposed ECD was constructed and experiments were performed to investigate its dynamic characteristics. The experiments shows that the proposed ECD has the excellent damping ability.

  • PDF

Robust Control of Biped Robot Using Sliding Mode Controller (슬라이딩 모드 제어기를 이용한 이족로봇의 강건제어)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.576-583
    • /
    • 2000
  • A robust position control using a sliding mode controller is adopted for the stable dynamic walking of the biped. For the biped robot that is modeled with 14 degrees of freedom rigid bodies using the method of the multibody dynamics, the joint angles for simulation are obtained by the velocity transformation matrix using the given Cartesian foot and trunk trajectories. Hertz force model and Hysteresis damping element which is used in explanation of the energy dissipation during contact with ground are used for modeling of the ground reactions during the simulation. By the obtained that forces which contains highly confused noise elements and the system modeling uncertainties of various kinds such as unmodeled dynamics and parameter inaccuracies, the biped system will be unstable. For that problems, we are adopting a nonlinear robust control using a sliding mode controller. Under the assumption that the esimation error on the unknown parameters is bounded by a given function, that controller provides a successful way to preserve stability and achieve good performance, despite the presence of strong modeling imprecisions or uncertainties.

  • PDF

Sliding Mode Controller Design for Biped Robot (이족보행로봇을 위한 슬라이딩 제어기 설계)

  • Park, In-Gyu;Kim, Jin-Geol;Kim, Ki-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.137-146
    • /
    • 2001
  • A robust controller with the sliding mode is proposed for stable dynamic walking of the biped robot in this paper. For the robot system to be controlled, which is modeled as 14 DOF rigid bodies by the method of multi-body dynamics, the joint angle trajectories are determined by the velocity transformation matrix. Also Hertz force model and Hysteresis damping element are utilized for the ground reaction and impact forces during the contact with the ground. The biped robot system becomes unstable since those forces contain highly confused noise components and some discontinuity, and modeling uncertainties such as parameter inaccuracies. The sliding mode control is applied to solve above problems. Under the assumption of the bounded estimation errors on the unknown parameters, the proposed controller provides a successful way to achieve the stability and good performance in spite of the presence of modeling imprecisions of uncertainties.

  • PDF

Shaking table study of a 2/5 scale steel frame with new viscoelastic dampers

  • Chang, K.C.;Tsai, M.H.;Lai, M.L.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.273-286
    • /
    • 2001
  • Viscoelastic (VE) dampers have shown to be capable of providing structures with considerable additional damping to reduce the dynamic response of structures. However, the VE material appears to be sensitive to the variations in ambient temperature and vibration frequency. To minimize these effects, a new VE material has been developed. This new material shows less sensitivity to variations in vibration frequency and temperature. However, it is highly dependent on the shear strain. Experimental studies on the seismic behavior of a 2/5 scale five-story steel frame with these new VE dampers have been carried out. Test results show that the structural response can be effectively reduced due to the added stiffness and damping provided by the new type of VE dampers under both mild and strong earthquake ground motions. In addition, analytical studies have been carried out to describe the strain-dependent behavior of the VE damper. The dynamic properties and hysteresis behavior of the dampers can be simulated by a simple bilinear model based on the equivalent dissipated energy principle proposed in this study.

Finite Element Model Verification of Buckling Restrained Brace With Nonlinear Behavior (비선형 거동을 하는 비좌굴가새의 유한요소모델 검증)

  • Kim, Dae-Hong;Yoo, Jung-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.81-88
    • /
    • 2021
  • In this paper, nonlinear finite element analysis was conducted based on the experimental results on buckling restrained brace. The reliability of the analytical model was verified by comparing the results of experimental studies with hysteresis loop, bi-linear curve, cumulative energy dissipation capacity, and equivalent viscous damping. A valid finite element model has been secured and will be used as basic data for finite element analysis of buckling restrained braces in the future.