• Title/Summary/Keyword: Hysteresis control

Search Result 485, Processing Time 0.028 seconds

Control of Optical Hysteresis in Block Copolymer Photonic Gels: A Step Towards Wet Photonic Memory Films

  • Kim, Eun-Ju;Gang, Chang-Jun;Jang, Yu-Rim;Senthilkumar, S.;Gang, Yeong-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.279-279
    • /
    • 2010
  • Smart gels have recently associated with photonic crystals to form photonic gels. Since these photonic gels are capable of reversibly converting the volume change of gels induced in response to external chemical or electric stimuli into characteristic optical signals, they have been considered not only as a good platform for label-free chemical or biological detection, actuators or optical switches but also as a good model system to investigate gel swelling behaviour. Recently, we reported block copolymer photonic gels self-assembled from polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) block copolymers, and demonstrated that selective swelling of lamellar structure allows extremely large tunability of the photonic stop band from UV region to IR region ($\lambda$ peak=350~1,600 nm). Herein we report block copolymer photonic gels which exhibit strong tunable optical hysteresis and their applications. As nonlinear responses in swelling of hydrogels were often observed, photonic gels exhibit optical hysteresis with change of external pH. We demonstrate such optical hysteresis can be precisely programmed by controlling ion-pairing affinity. We anticipate that photonic gels with carefully tunned optical hysteresis are applicable to optical memory devices.

  • PDF

A Study on Forced Vibration Tests on a Structure with Stud Type of Vibration Control Damper (스터드형 진동제어 강재댐퍼가 장착된 3층 강구조 골조의 강제진동실험에 관한 연구)

  • Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.115-121
    • /
    • 2006
  • In recent years vibration control damper made of low yield point steel is expected to play an important role in controlling structural vibration induced earthquake and wind. But their dynamic characteristics and energy dissipation effects on the whole structure model are not clarified. In this paper, firstly, we presents the results of cyclic tests on low yield steel dampers. Secondly, forced vibration tests on existence three stories steel structure model with low yield point steel dampers are presented. Lastly, it is estimated energy amount which is dissipated through the hysteresis dampers by using two types of analytical models, hysteresis model and equivalent linear model.

  • PDF

Preisach model based Real-time control for systems with Hysteresis (히스테리시스를 갖는 미세 구동기의 실시간 제어 알고리즘)

  • Lee, Ah-Ram;Lee, Ji-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.1
    • /
    • pp.31-40
    • /
    • 2008
  • This paper presented the development and real-time control of a magnetostrictive micro actuator. Magnetostrictive material has many advantages such as high response time, precision displacement and powerful output force. But Magnetostrictive material has characteristic of hysteresis. Conventional Preisach model which based on experimental data is not suitable to the real-time control because of controlling a magnetostrictive system by Preisach model costs a lot of calculating time. And, we prove the validity of proposed model through the experimental comparison between the classical Preisach model and the proposed one.

Robust Control of Biped Robot Using Sliding Mode Controller (슬라이딩 모드 제어기를 이용한 이족로봇의 강건제어)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.576-583
    • /
    • 2000
  • A robust position control using a sliding mode controller is adopted for the stable dynamic walking of the biped. For the biped robot that is modeled with 14 degrees of freedom rigid bodies using the method of the multibody dynamics, the joint angles for simulation are obtained by the velocity transformation matrix using the given Cartesian foot and trunk trajectories. Hertz force model and Hysteresis damping element which is used in explanation of the energy dissipation during contact with ground are used for modeling of the ground reactions during the simulation. By the obtained that forces which contains highly confused noise elements and the system modeling uncertainties of various kinds such as unmodeled dynamics and parameter inaccuracies, the biped system will be unstable. For that problems, we are adopting a nonlinear robust control using a sliding mode controller. Under the assumption that the esimation error on the unknown parameters is bounded by a given function, that controller provides a successful way to preserve stability and achieve good performance, despite the presence of strong modeling imprecisions or uncertainties.

  • PDF

A Hysteresis Current Controlled Resonant C-Dump Converter for Switched Reluctance Motor (스위치드 릴럭턴스 전동기 구동을 위한 히스테리시스 전류 제어형 공진형 C-Dump 컨버터)

  • Yoon, Yong-Ho;Kim, Jae-Moon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.72-78
    • /
    • 2008
  • The speed variation of SRM is fulfilled throughout a transition from chopping control to single pulse operation. (i,e., low speed to high speed operation). It is unsatisfied with performance at all operational regimes. In this paper, the operational performance of SRM can be improved by using current hysteresis control method. This method maintains a generally flat current waveform. At the high speed, the current chopping capability is lost due to the development of the back-EMF. Therefore SRM operates in single pulse mode. By using zero-current switching and zero-voltage switching technique, the stress of power switches can be reduce in chopping mode. When the commutation from one phase winding to another phase winding, the current can be zero as fast as possible in this period because several times negative voltage of DC-source voltage produce in phase winding. This paper is compared to performance based on conventional C-dump converter topology and the proposed resonant C-dump converter topology. Simulation and experimental results are presented to verify the effectiveness of the proposed circuit.

Experimental Analysis of the Static and Dynamic Characteristics for a Pilot Proportional Pressure Control Valve (파일럿 비례압력제어밸브의 정특성 및 동특성에 관한 실험적 분석)

  • Jeong, H.S.;Nam, J.W.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.4
    • /
    • pp.9-16
    • /
    • 2011
  • Because of the increasing demand on the high precision and high response of a machinery, proportional control valves are widely adopted at various application fields. This paper studies on the static and dynamic characteristics of a pilot proportional pressure control valve. An experimental apparatus including hydraulic pump, variable speed inverter, pressure and flow sensors and data aquisition system was set up. And various experiments such as P-Q-V curves, step responses due to input voltage and flow rate, hysteresis, frequency response of the proportional valve was carried out and the results are discussed.

A Study on the Sensorless Speed Control of Induction Motor by New Direct Torque Control (새로운 직접토크제어에 의한 유도전동기의 센서리스 속도제어)

  • Kim, Jong-Su;Seo, Dong-Hoan;Kim, Seung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1105-1110
    • /
    • 2011
  • This paper presents an improved direct torque control based on artificial neural networks technique. The major problem that is usually associated with DTC drive is the high torque(speed) ripple. To overcome this problem a torque hysteresis band with variable amplitude is proposed based on artificial neural networks. The artificial neural networks proposed controller is shown to be able to reducing the torque(speed) ripple and dependency on motor parameter and to improve performance DTC especially at high speed and reversal running.

The Application of Piezoelectric Materials in Smart Structures in China

  • Qiu, Jinhao;Ji, Hongli
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.266-284
    • /
    • 2010
  • Piezoelectric materials have become the most attractive functional materials for sensors and actuators in smart structures because they can directly convert mechanical energy to electrical energy and vise versa. They have excellent electromechanical coupling characteristics and excellent frequency response. In this article, the research activities and achievements on the applications of piezoelectric materials in smart structures in China, including vibration control, noise control, energy harvesting, structural health monitoring, and hysteresis control, are introduced. Special attention is given to the introduction of semi-active vibration suppression based on a synchronized switching technique and piezoelectric fibers with metal cores for health monitoring. Such mechanisms are relatively new and possess great potential for future applications in aerospace engineering.

A study on the Novel Current Control method in vector controlled inverter drive system (벡터제어 인버터의 새로운 전류제어에 관한 연구)

  • Lee, Y.J.;Yim, N.H.;Oh, W.S.;Son, Y.D.;Min, K.K.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.346-350
    • /
    • 1990
  • This paper proposes a novel current control strategy for current regulated VSI-PWM transistor inverter. The conventional hysteresis control method has good dynamic responses. But the switching frequencies are high because it does not optimize switching patterns. Proposed current control strategy can optimize switching patterns. As regulator, three level comparators are used. The outputs of the comparators select appropriate inverter output voltage vectors via switching table stored in EPROM. The simulation and exparimental results in comparison to contentional hysteresis strategy are presented and discussed.

  • PDF

Novel Predictive Maximum Power Point Tracking Techniques for Photovoltaic Applications

  • Abdel-Rahim, Omar;Funato, Hirohito;Haruna, Junnosuke
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.277-286
    • /
    • 2016
  • This paper offers two Maximum Power Point Tracking (MPPT) systems for Photovoltaic (PV) applications. The first MPPT method is based on a fixed frequency Model Predictive Control (MPC). The second MPPT technique is based on the Predictive Hysteresis Control (PHC). An experimental demonstration shows that the proposed techniques are fast, accurate and robust in tracking the maximum power under different environmental conditions. A DC/DC converter with a high voltage gain is obligatory to track PV applications at the maximum power and to boost a low voltage to a higher voltage level. For this purpose, a high gain Switched Inductor Quadratic Boost Converter (SIQBC) for PV applications is presented in this paper. The proposed converter has a higher gain than the other transformerless topologies in the literature. It is shown that at a high gain the proposed SIQBC has moderate efficiency.