• Title/Summary/Keyword: Hysteresis comparators

Search Result 10, Processing Time 0.035 seconds

Multistage Inverters Control Using Surface Hysteresis Comparators

  • Menshawi, Menshawi K.;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.59-69
    • /
    • 2013
  • An alternative technique to control multilevel inverters with vector approximations has been presented. The innovative control method utilizes specially designed two-dimensional hysteresis comparators to simplify the implementation and improve the resultant waveform. The multistage inverter designed with maximum number of levels is operated in such a way to approximate the reference voltage vector by exploiting the large number of multilevel inverter vectors. A three-stage inverter with the main high voltage stage made of three phase, six-switch and singly-fed inverter is considered for application to the proposed design. The proposed control concept is to maintain a higher voltage stage state as long as it can lead to a target vector. High and medium voltage stages controllers are based on surface hysteresis comparators to hold the switching state or to perform the necessary change to achieve its reference voltage with minimal switching losses. The low voltage stage controller is designed to approximate the target reference voltage to the nearest inverter vector using the nearest integer rounding and adjustment comparators. Model simulation and prototype test results show that the proposed control technique clearly outperforms the previous control methods.

A study on the Novel Current Control method in vector controlled inverter drive system (벡터제어 인버터의 새로운 전류제어에 관한 연구)

  • Lee, Y.J.;Yim, N.H.;Oh, W.S.;Son, Y.D.;Min, K.K.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.346-350
    • /
    • 1990
  • This paper proposes a novel current control strategy for current regulated VSI-PWM transistor inverter. The conventional hysteresis control method has good dynamic responses. But the switching frequencies are high because it does not optimize switching patterns. Proposed current control strategy can optimize switching patterns. As regulator, three level comparators are used. The outputs of the comparators select appropriate inverter output voltage vectors via switching table stored in EPROM. The simulation and exparimental results in comparison to contentional hysteresis strategy are presented and discussed.

  • PDF

Direct Torque Control according to Flux and Torque of Hysterisis Band (자속 및 토오크 히스테리시스 밴드폭에 따른 직접토오크 제어)

  • Choi, Youn-Ok;Jeong, Sam-Yong;Kim, Dae-Gon;Kim, Pyung-Ho;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1206-1208
    • /
    • 2001
  • Direct torque control(DTC) of AC motor has the fast torque and flux dynamic responses even though it has very simple scheme to implement. DTC is also very simple in its implementation because it needs only two hysteresis comparators and switching vector table for both flux and torque control. The amplitude of hysteresis band greatly influences on the drive performance such as flux and torque ripple, switching frequency and current harmonics. Therefore, authors analysis flux and torque hysteresis bands is suggested considering switching frequency and harmonic distortion of currents.

  • PDF

Sliding Mode Control with Fixed Switching Frequency for Four-wire Shunt Active Filter

  • Hamoudi, Farid;Chaghi, A. Aziz;Amimeur, Hocine;Merabet, El Kheir
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.647-657
    • /
    • 2011
  • The present paper proposes a sliding mode control with fixed switching frequency for three-phase three-leg voltage source inverter based four-wire shunt active power filter. The aim is to improve phase current waveform, neutral current mitigation, and reactive power compensation in electric power distribution system. The performed sliding mode for active filter current control is formulated using elementary differential geometry. The discrete control vector is deduced from the sliding surface accessibility using the Lyapunov stability. The problem of the switching frequency is addressed by considering hysteresis comparators for the switched signals generation. Through this method, a variable hysteresis band has been established as a function of the sliding mode equivalent control and a predefined switching frequency in order to keep this band constant. The proposed control has been verified with computer simulation which showed satisfactory results.

A Study on Current Control using a Novel SVM-Based Hysteresis Controller in D-STATCOM (SVM 기반 히스테리시스 제어기를 이용한 D-STATCOM 전류 제어에 관한 연구)

  • Choi Jeong-Hye;Shin, Eun-Chul;Yoo, Ji-Yoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.293-301
    • /
    • 2006
  • This paper proposes a control algorithm for STATic synchronous COMpensator(STATCOM), based on Space Vector Modulation(SVM) and Hysteresis Current Controller(HCC) techniques. STATCOM is used to reactive power compensation on a distribution network. The proposed algorithm utilizes the advantages of the fast dynamic response of the hysteresis current control and the reduced switching number of the SVM scheme. The controller determines a set of space vectors from a region detector and applies a space vector. A set of space vectors including the zero vector, to reduce the number of switching, is determined from output signals of two hysteresis comparators. The presented control system was tested with digital simulation in the Borland C++ program and demonstrate the advantage of the proposed hysteresis current controller.

Design of High-Speed Comparators for High-Speed Automatic Test Equipment

  • Yoon, Byunghun;Lim, Shin-Il
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.291-296
    • /
    • 2015
  • This paper describes the design of a high-speed comparator for high-speed automatic test equipment (ATE). The normal comparator block, which compares the detected signal from the device under test (DUT) to the reference signal from an internal digital-to-analog converter (DAC), is composed of a rail-to-rail first pre-amplifier, a hysteresis amplifier, and a third pre-amplifier and latch for high-speed operation. The proposed continuous comparator handles high-frequency signals up to 800MHz and a wide range of input signals (0~5V). Also, to compare the differences of both common signals and differential signals between two DUTs, the proposed differential mode comparator exploits one differential difference amplifier (DDA) as a pre-amplifier in the comparator, while a conventional differential comparator uses three op-amps as a pre-amplifier. The chip was implemented with $0.18{\mu}m$ Bipolar CMOS DEMOS (BCDMOS) technology, can compare signal differences of 5mV, and operates in a frequency range up to 800MHz. The chip area is $0.514mm^2$.

Direct Torque Control of Induction Motor for Constant Switching by Torque Slop (토오크 기울기에 의한 일정스위칭을 위한 유도전동기의 직접토오크 제어)

  • Park, Jung-Kook;Kim, Dae-Kon;Jeong, Byeong-Ho;Choi, Youn-Ok;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.296-299
    • /
    • 2003
  • The conventional DTC strategy provides a fast torque response even though it has very simple scheme consisted with only two hysteresis band comparators and a switching table for torque and flux control. Drawbacks of the conventional DTC are relatively high torque ripple at low speed and variation of the switching frequency according to motor speed. In this paper, the new direct torque control(DTC) schemes are proposed. Those schemes are based on the torque slope and enable to reduce the torque ripple and maintain the switching frequency constantly.

  • PDF

Direct Torque Control of Induction Motor by Torque Slope and Reference Voltage Control (토오크 기울기 및 기준전압제어에 의한 유도전동기의 직접토오크 제어)

  • Kim Pyoung-Ho;Choi Youn-Ok;Cho Geum-Bae;Baek Hyung-Lae;Lee Sang-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • The conventional hysterysis band DTC(Direct Torque Control) strategy have relatively high torque ripple at low speed and variable switching frequency according to motor speed even though it provides a fast torque response with very simple scheme consisted with only two hysteresis band comparators and a switching table for torque and flux control. In this paper, author proposed a new DTC scheme based on the torque slope and reference voltage control. The new scheme can maintain the minimized torque ripple and constant switching frequency. Experimental tests carried out with an 1.5kW induction motor drive system show improved dynamic characteristics and prove the feasibility of proposed strategy.

Direct Torque Control of Induction Motor Using Flux & Torque Slop (자속 및 토오크 기울기를 이용한 유도전동기의 직접토오크 제어)

  • Choi, Youn-Ok;Choi, Mon-Han;Jeong, Sam-Young;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1135-1137
    • /
    • 2003
  • The conventional DTC strategy provides a fast torque response even though it has very simple scheme consisted with only two hysteresis band comparators and a switching table for torque and flux control. Drawbacks of the conventional BTC are relatively high torque ripple at low speed and variation of the switching frequency according to motor speed. In this paper, the new direct torque control(BTC) schemes are proposed. Those schemes are based on the torque slope and and flux to reduce the torque ripple.

  • PDF

Extending Switching Frequency for Torque Ripple Reduction Utilizing a Constant Frequency Torque Controller in DTC of Induction Motors

  • Jidin, Auzani;Idris, Nik Rumzi Nik;Yatim, Abdul Halim Mohd;Sutikno, Tole;Elbuluk, Malik E.
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.148-155
    • /
    • 2011
  • Direct torque control(DTC) of induction machines is known to offer fast instantaneous torque and flux control with a simple control structure. However, this scheme has two major disadvantageous, namely, a variable inverter switching frequency and a high torque ripple. These problems occur due to the use of hysteresis comparators in conventional DTC schemes, particularly in controlling the output torque. This paper reviews the utilization of constant frequency torque controllers (CFTC) in DTC to solve these problems while retaining the simple control structure of DTC. Some extensions of the work in utilizing a CFTC will be carried out in this paper which can further reduce the torque ripple. This is particularly useful for a system which has a limited/low sampling frequency. The feasibility of a CFTC with an extended carrier frequency in minimizing the torque ripple is verified through experimental results.