• Title/Summary/Keyword: Hypoxic Condition

Search Result 80, Processing Time 0.031 seconds

Estrogen receptor is downregulated by expression of HIF-1a/VP16

  • Cho, Jung-Yoon;Lee, Young-Joo
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.228.2-229
    • /
    • 2003
  • Estrogen Receptor is a ligand-activated transcription factor. The concentration of the receptor is a major component that regulates expression of estrogen-responsive genes. We have studied mechanism of estrogen receptor alpha (ER${\alpha}$) downregulation by HIF-1 using HIF-1${\alpha}$/VP16 constructs. ER${\alpha}$ is known to be downregulated under hypoxic condition. Transcriptional response under hypoxia is mediated through Hypoxia-inducible factor-1 (HIF-1), a transcription factor that is usullaly degraded but stabilized under hypoxia. (omitted)

  • PDF

Pharmacodynamics of Tirapazamine in Histocultures of a Human Lung Adenocarcinoma Xenograft (인체폐암세포 조직배양계(histocultures)에서 티라파자민의 약력학)

  • Park, Jong-Kook;Kuh, Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.4
    • /
    • pp.231-237
    • /
    • 2006
  • Hypoxia in solid tumors is known to contribute to intrinsic chemoresistance. Histocultures are in vitro 3 dimensional cultures of tumor tissues and maintain the characteristic microenvironment of human solid tumors in vivo including hypoxia and multicellular structure. In this study, we evaluated the pharmacodynamics of tirapazamine(TPZ), a hypoxia-selective cytotoxin, in human non small cell lung cancer(NSCLC) cells grown as monolayers and histocultures. Antiproliferative activity of TPZ was determined after various conditions of drug exposure, and cell cycle arrest and apoptosis were also measured using flow cytometry. In monolayers, hypoxia selectivity measured by hypoxic/normoxic cytotoxicity ratio was increased with longer exposure. Lower cytotoxicity of TPZ was observed in histocultures compared to monolayers, however, a similar level of cytotoxicity was obtained with longer exposure of 96 hr. TPZ induced $G_2/M$ arrest and apoptosis in both culture conditions, which were greatly enhanced under hypoxic condition. Our data clearly showed the different pharmacodynamics of TPZ in monolayers and histocultures. Antiproliferative activity of TPZ against human solid tumors can be improved with longer drug exposure by exploiting drug delivery systems or by combining angiogenesis inhibitors to maintain drug concentration in tumor tissues.

1-Benzyl indazole derivative-based 18F-labeled PET radiotracer: Radiosynthesis and cell uptake study in cancer cells

  • More, Kunal N.;Lee, Jun Young;Park, Jeong-Hoon;Chang, Dong-Jo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.1
    • /
    • pp.36-47
    • /
    • 2019
  • Hypoxia-inducible factor-1 ($HIF-1{\alpha}$) is a transcription factor activated in response to low oxygen level, and is highly expressed in many solid tumors. Moreover, $HIF-1{\alpha}$ is a representative biomarker of hypoxia and also helps to maintain cell homeostasis under hypoxic condition. Most solid tumors show hypoxia, which induces poor prognosis and resistance to conventional cancer therapies. Thus, early diagnosis of hypoxia with positron emission tomography (PET) radiotracer would be highly beneficial for management of malignant solid tumors with effective cancer therapy. YC-1 is a most promising candidate among several $HIF-1{\alpha}$ inhibitors. As an effort to develop a hypoxia imaging tool as a PET radiotracer, we designed and synthesized [$^{18}F$]DFYC based on potent derivative of YC-1 and performed preliminary in vitro cell uptake study. [$^{18}F$]DFYC showed a significant accumulation in SKBR-3 cells among other cancer cells, proving as a good lead to develop a hypoxic solid tumor such as breast cancer.

Waterlogging induced oxidative stress and the mortality of the Antarctic plant, Deschampsia antarctica

  • Park, Jeong Soo;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.289-296
    • /
    • 2019
  • We investigated the mortality and the oxidative damages of Deschampsia antarctica in response to waterlogging stress. In field, we compared the changes in the density of D. antarctica tuft at the two different sites over 3 years. The soil water content at site 2 was 6-fold higher than that of site 1, and the density of D. antarctica tuft decreased significantly by 55.4% at site 2 for 3 years, but there was no significant change at site 1. Experimental results in growth chamber showed that the $H_2O_2$ and malondialdehyde content increased under root-flooding treatment (hypoxic conditions-deficiency of $O_2$), but any significant change was not perceptible under the shoot-flooding treatment (anoxic condition-absence of $O_2$). However, total chlorophyll, soluble sugar, protein content, and phenolic compound decreased under the shoot-flooding treatment. In addition, the catalase activity increased significantly on the 1st day of flooding. These results indicate that hypoxic conditions may lead to the overproduction of reactive oxygen species, and anoxic conditions can deplete primary metabolites such as sugars and protein in the leaf tissues of D. antarctica. Under present warming trend in Antarctic Peninsula, D. antarctica tuft growing near the shoreline might more frequently experience flooding due to glacier melting and inundation of seawater, which can enhance the risk of this plant mortality.

Insulin Induces Transcription of VEGF in Arnt-dependent but HIF-l$\alpha$-Independent Pathway

  • Park, Youngyeon;Park, Hyuns-Sung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.100-100
    • /
    • 2001
  • Hypoxia is a pathophysiological condition that occurs during injury, ischemia, and stroke. Hypoxic stress induces the expression of genes associated with increased energy flux, including the glucose transporters Glutl and Glut3, several glycolytic enzymes, nitric oxide synthase, erythropoietin and vascular endothelial growth factor. Induction of these genes is mediated by a common basic helix-loop-helix PAS transcription complex, the hypoxia-inducible factor-l${\alpha}$ (HIF-1${\alpha}$)/ aryl hydrocarbon receptor nuclear translocator (ARNT). Insulin plays a central role in regulating metabolic pathways associated with energy storage and utilization. It triggers the conversion of glucose into glycogen and triglycerides and inhibits gluconeogenesis. Insulin also induced hypoxia-induced genes. However the underlying mechanism is unestablished. Here, we study the possibility that transcription factor HIF-1${\alpha}$ is involved in insulin-induced gene expression. We investigate the mechanism that regulates hypoxia-inducible gene expression In response to insulin We demonstrate that insulin increases the transcription of hypoxia- inducible gene. Insulin-induced transcription is not detected in Arnt defective cell lines. Under hypoxic condition, HIF- l${\alpha}$ stabilizes but does not under insulin treatment. Insulin-induced gene expression is inhibited by presence of PI-3 kinase inhibitor and Akt dominant negative mutant, whereas hypoxia-induced gene expression is not. ROS inhibitor differently affects insulin-induced gene expressions and hypoxia-induced gene expressions. Our results demonstrate that insulin also regulates hypoxia-inducible gene expression and this process is dependent on Arnt. However we suggest HIF-l${\alpha}$ is not involved insulin-induced gene expression and insulin- and hypoxia- induces same target genes via different signaling pathway.

  • PDF

Attenuation of Brain Injury by Water Extract of Goat's-beard (Aruncus dioicus) and Its Ethyl Acetate Fraction in a Rat Model of Ischemia-Reperfusion

  • Han, Hyung-Soo;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.3
    • /
    • pp.217-223
    • /
    • 2011
  • Ischemic stroke constitutes about 80% of all stroke incidences. It is characterized by brain cell death in a region where cerebral arteries supplying blood are occluded. Under these ischemic conditions, apoptosis is responsible for the cell death, at least in part. Goat's-beard (Aruncus dioicus var. kamtschaticus) is a perennial plant that grows naturally in the alpine regions of Korea. In the present study, we first determined whether water extract of goat's-beard (HY1646) and some of its fractions prepared by partitioning with organic solvents could improve the viability of human hepatocellular carcinoma cells (HepG2) cultured under hypoxic condition by blocking apoptotic pathways. Based on the in vitro findings, we subsequently investigated whether HY1646 and the ethyl acetate fraction (EA) selected from cell culture-based screening could attenuate brain injury in a rat middle cerebral artery occlusion (MCAO) model of ischemia (2 hr), followed by 22 hours of reperfusion. The cell number was sustained close to that initially plated in the presence of HY1646 even after 24 hr of cell culture under hypoxic condition (3% $O_2$), at which time the cell number reached almost zero in the absence of HY1646. This improvement in cell viability was attributed to the delay in apoptosis, identified by the formation of DNA ladder in gel electrophoresis. Of fractions soluble in hexane, ethyl acetate (EA) and butanol, EA was chosen for the animal experiments because EA demonstrated the best cell viability at the lowest concentration (10 ${\mu}g$/mL). HY1646 (200 mg/kg) and EA (10 and 20 mg/kg) significantly reduced infarct size, an index of brain injury, by 16.6, 40.0 and 61.0%, respectively, as assessed by 2,3,5-triphenyl tetrazolium chloride staining. The findings suggest that prophylactic intake of goat's beard might be beneficial for preventing ischemic stroke.

Methanol Extract of Cassia mimosoides var. nomame and Its Ethyl Acetate Fraction Attenuate Brain Damage by Inhibition of Apoptosis in a Rat Model of Ischemia-Reperfusion

  • Kim, Ki-Hong;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.255-261
    • /
    • 2010
  • Ischemic stroke, a major cause of death and disability worldwide, is caused by occlusion of cerebral arteries that, coupled with or without reperfusion, results in prolonged ischemia (hypoxia and hypoglycemia) and, ultimately, brain damage. In this study, we examined whether methanol extract of the whole plant of Cassia mimosoides var. nomame Makino that grows naturally in Korea, as well as Japan and China, and some of its fractions obtained by partitioning with organic solvents could protect human hepatocellular carcinoma cells (HepG2) under hypoxic condition by inhibiting apoptosis. We also investigated if these extracts could attenuate brain damage in a rat model of 2 hr of ischemia, generated by middle cerebral artery occlusion, and 22 hr of reperfusion. The whole extract ($100{\mu}g$/mL) maintained the cell number at more than half of that initially plated, even after 24 hr of cell culture under hypoxic condition (3% $O_2$). In the absence of the whole extract, almost all of the cells were dead by this time point. This improvement of cell viability came from a delay of apoptosis, which was confirmed by observing the timing of the formation of a DNA ladder when assessed by gel electrophoresis. Of fractions soluble in hexane, ethyl acetate (EA), butanol and water, EA extracts were selected for the animal experiments, as they improved cell viability at the lowest concentration ($10{\mu}g$/mL). The whole extract (200 mg/kg) and EA extract (10 and 20 mg/kg) significantly reduced infarct size, a measure of brain damage, by 34.7, 33.8 and 45.2.0%, respectively, when assessed by 2,3,5-triphenyl tetrazolium chloride staining. The results suggest that intake of Cassia mimosoides var. nomame Makino might be beneficial for preventing ischemic stroke through inhibition of brain cell apoptosis.

Melatonin mitigates the adverse effect of hypoxia during myocardial differentiation in mouse embryonic stem cells

  • Lee, Jae-Hwan;Yoo, Yeong-Min;Lee, Bonn;Jeong, SunHwa;Tran, Dinh Nam;Jeung, Eui-Bae
    • Journal of Veterinary Science
    • /
    • v.22 no.4
    • /
    • pp.54.1-54.13
    • /
    • 2021
  • Background: Hypoxia causes oxidative stress and affects cardiovascular function and the programming of cardiovascular disease. Melatonin promotes antioxidant enzymes such as superoxide dismutase, glutathione reductase, glutathione peroxidase, and catalase. Objectives: This study aims to investigate the correlation between melatonin and hypoxia induction in cardiomyocytes differentiation. Methods: Mouse embryonic stem cells (mESCs) were induced to myocardial differentiation. To demonstrate the influence of melatonin under hypoxia, mESC was pretreated with melatonin and then cultured in hypoxic condition. The cardiac beating ratio of the mESC-derived cardiomyocytes, mRNA and protein expression levels were investigated. Results: Under hypoxic condition, the mRNA expression of cardiac-lineage markers (Brachyury, Tbx20, and cTn1) and melatonin receptor (Mtnr1a) was reduced. The mRNA expression of cTn1 and the beating ratio of mESCs increased when melatonin was treated simultaneously with hypoxia, compared to when only exposed to hypoxia. Hypoxia-inducible factor (HIF)-1α protein decreased with melatonin treatment under hypoxia, and Mtnr1a mRNA expression increased. When the cells were exposed to hypoxia with melatonin treatment, the protein expressions of phospho-extracellular signal-related kinase (p-ERK) and Bcl-2-associated X proteins (Bax) decreased, however, the levels of phospho-protein kinase B (p-Akt), phosphatidylinositol 3-kinase (PI3K), B-cell lymphoma 2 (Bcl-2) proteins, and antioxidant enzymes including Cu/Zn-SOD, Mn-SOD, and catalase were increased. Competitive melatonin receptor antagonist luzindole blocked the melatonin-induced effects. Conclusions: This study demonstrates that hypoxia inhibits cardiomyocytes differentiation and melatonin partially mitigates the adverse effect of hypoxia in myocardial differentiation by regulating apoptosis and oxidative stress through the p-AKT and PI3K pathway.

Hypoxia Induced Expression of Vascular Endothelial Growth Factor in Rat Pulmonary Artery Smooth Muscle Cells (쥐의 폐동맥 평활근 세포에서 저산소에 의한 Vascular Endothelial Growth Factor의 발현)

  • Nho, Un Seok;Kim, Yeo Hyang;Hyun, Myung Chul;Lee, Sang Bum
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.2
    • /
    • pp.167-172
    • /
    • 2003
  • Purpose : Pulmonary vascular hypertension is a common problem in congenital heart disease, the most common cardiac condition in childhood. However, the mechanisms responsible for this pathologic change, treatment, and prevention are poorly understood. Therefore, we studied the gene expression of vascular endothelial growth factor(VEGF) by using a hypoxic model of the pulmonary artery smooth muscle cells. Methods : The main pulmonary artery and its proximal branches of a 6 wk old Fischer rat were excised. They were cut into multiple small pieces and suspended in DMEM medium supplemented with 20% fetal bovine serum and incubated in 5% $CO_2$-95% air atmosphere. The smooth muscle cells were confirmed by immunostaining with smooth muscle myosin and ${\alpha}$-smooth muscle actin antibodies. The VEGF gene expression in the hypoxic group was compared with the one in control the group as well as the one in the starved group by RT-PCR and Northern blot hybridization. Results : There was no statistically significant difference among the control, hypoxic and starved groups. Conclusion : There are few studies of pulmonary vascular hypertension at the molecular level in Korea. Therefore, we studied the expression of VEGF gene in hypoxic pulmonary vascular smooth muscle cells. Further studies will be needed to find the difference between newly born and adult rats, or human and rat pulmonary vascular smooth muscle cells in gene expression. We hope that the study will lead to a better understanding of pulmonary vascular hypertension.