• 제목/요약/키워드: Hypoxia-Ischemia

검색결과 91건 처리시간 0.029초

가미지황환이 저산소성 신경세포 손상에 미치는 영향 (Influence of Kamijihwang-hwan on the Hypoxic Damage of Cultured Cerebral Neurons from mouse and SK-N-MC cells)

  • 백은경;주성민;김근중;김대근;강정호;이영찬;이준;김영목;전병훈
    • 동의생리병리학회지
    • /
    • 제17권4호
    • /
    • pp.1082-1091
    • /
    • 2003
  • To elucidate the neuroprotective effect of Kamijihwang-hwan(KSH) on nerve cells damaged by hypoxia, the cytotoxic effects of exposure to hypoxia were determined by XTT, NR, MTT and SRB asssay. The activity of catalase and SOD was measured by spectrophometry, and TNF-α and PKC activity was measured after exposure to hypoxia and treatment of Kamijihwang-hwan(KSH) water extract(KJHWE). Also the neuroprotective effect of KJHWE was researched for the elucidation of neuroprotective mechanism. The results were as follows ; Hypoxia decreased cell viability measured by XTT, NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO₂ for 2~26 minutes in these cultures and KJHWE inhibited the decrease of cell viability. H₂O₂ treatment decreased cell viability measured by MTT, and SRB assay when cultured cerebral neurons were exposed to 1-80 uM for 6 hours, but KJHWE inhibited the decrease of cell viability. Hypoxia decreased catalase and SOD activity, and also TNF-α and PKC activity in these cultured cerebral neurons, but KJHWE inhibited the decrease of the catalase and SOD activity in these cultures. Hypoxia triggered the apoptosis via caspase activation and internucleosomal DNA fragmentation. Also hypoxia stimulate the release of cytochrome c form mitochondria. KJHWE inhibited the apoptosis via caspase activation induced by hypoxia. From these results, it can be suggested that brain ischemia model induced hypoxia showed neurotoxity on cultured mouse cerebral neurons, and the KJHWE has the neuroprotective effect in blocking the neurotoxity induced by hypoxia in cultured mouse cerebral neurons.

Prolyl 4 Hydroxylase: A Critical Target in the Pathophysiology of Diseases

  • Kant, Ravi;Bali, Anjana;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권2호
    • /
    • pp.111-120
    • /
    • 2013
  • Prolyl 4 hydroxylases (P4H) are iron- and 2-oxoglutamate-dependent dioxygenase enzymes and hypoxia-inducible transcription factor (HIF)-P4Hs play a critical role in the regulating oxygen homeostasis in the local tissues as well in the systemic circulation. Over a period of time, a number of prolyl hydroxylase inhibitors and activators have been developed. By employing the pharmacological tools and transgenic knock out animals, the critical role of these enzymes has been established in the pathophysiology of number of diseases including myocardial infarction, congestive heart failure, stroke, neurodegeneration, inflammatory disease, respiratory diseases, retinopathy and others. The present review discusses the different aspects of these enzymes including their pathophysiological role in disease development.

Regulation of BNIP3 in Normal and Cancer Cells

  • Lee, Hayyoung;Paik, Sang-Gi
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2006
  • Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) is a mitochondrial pro-apoptotic protein that has a single Bcl-2 homology 3 (BH3) domain and a COOH-terminal transmembrane (TM) domain. Although it belongs to the Bcl-2 family and can heterodimerize with Bcl-2, its pro-apoptotic activity is distinct from those of other members of the Bcl-2 family. For example, cell death mediated by BNIP3 is independent of caspases and shows several characteristics of necrosis. Furthermore, the TM domain, but not the BH3 domain, is required for dimerization, mitochondrial targeting and pro-apoptotic activity. BNIP3 plays an important role in hypoxia-induced death of normal and malignant cells. Its expression is markedly increased in the hypoxic regions of some solid tumors and appears to be regulated by hypoxia-inducible factor (HIF), which binds to a site on the BNIP3 promoter. Silencing, followed by methylation, of the BNIP3 gene occurs in a significant proportion of cancer cases, especially in pancreatic cancers. BNIP3 also has a role in the death of cardiac myocytes in ischemia. Further studies of BNIP3 should provide insight into hypoxic cell death and may contribute to improved treatment of cancers and cardiovascular diseases.

열다한소탕(熱多寒少湯)이 저산소성(低酸素性) 대뇌신경세포(大腦神經細胞) 손상에 미치는 영향(影響) (Influence of Yeoldahanso-tang on the Hypoxic Damage of Cultured Cerebral Neurons from mouse and SK-N-MC cells)

  • 김형순;배영춘;이상민;김경요;원경숙;심규헌;박수정
    • 사상체질의학회지
    • /
    • 제15권1호
    • /
    • pp.72-89
    • /
    • 2003
  • To elucidate the neuroprotective effect of Yeoldahanso-tang(YHT) on nerve cells damaged by hypoxia, the cytotoxic effects of exposure to hypoxia were determined by XTT(SODIUM3,3'-{I-[(PHENYLAMINO) CARBONYL]-3,4-TETRAZOLIUM}- BIS (4-METHOXY-6-NITRO) BENZENE SULFONIC ACID HYDRATE), NR(Neutral red), MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and SRB(Sulforhodamin B) asssay. The activity of catalase and SOD(Superoxide dismutase) was measured by spectrophometry, and $TNF-{\alpha}$(Tumor cell necrosis $fector-{\alpha}$) and PKC(Protein kinase C) activity was measured after exposure to hypoxia and treatment of YHTWE. Also the neuroprotective effect of YHTWE was researched for the elucidatioion of neuroprotective mechanism. The results were as follows; 1. Hypoxia decreased cell viability measured by XTT, NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO2 for $2{\sim}26$ minutes in these cultures and YHTWE inhibited the decrease of cell viability. 2. H2O2 treatment decreased cell viability measured by MTT, and SRB assay when cultured cerebral neurons were exposed to 1-80 ${\mu}M$ for 6 hours, but YHTWE inhibited the decrease of cell viability. 3. Hypoxia decreased catalase and SOD activity, and also $TNF-{\alpha}$ and PKC activity in these cultured cerebral neurons, but YHTWE inhibited the decrease of the catalase and SOD activity in these cultures. 4. Hypoxia triggered the apoptosis via caspase activation and internucleosomal DNA fragmentation. Also hypoxia stimulate the release of cytochrome c forom mitochondria. YHTWE inhibited the apoptosis via caspase activation induced by hypoxia. From these results, it can be suggested that brain ischemia model induced hypoxia showed neurotoxicity on cultured mouse cerebral neurons, and the YHTWE has the neuroprotective effect in blocking the neurotoxicity induced by hypoxia in cultured mouse cerebral neurons.

  • PDF

신생 백서의 저산소성 허혈성 뇌손상에서 NMDA receptor 조절을 통한 유전자 재조합 인 에리스로포이에틴의 신경보호 (Neuroprotection of Recombinant Human Erythropoietin Via Modulation of N-methyl-D-aspartate Receptors in Neonatal Rats with Hypoxic-ischemic Brain Injury)

  • 장윤정;서억수;김우택
    • Neonatal Medicine
    • /
    • 제16권2호
    • /
    • pp.221-233
    • /
    • 2009
  • 목 적 : 신장에서 분비되어 적혈구를 생산하는 빈혈제로 알려진 에리스로포이에틴(Erythropoietin, EPO)은 단순히 피를 만드는 조혈기능 뿐 아니라 최근 신경계 보호 및 신경강화 효과가 있다고 발표되고 있지만 주산기 가사로 인한 저산소성 허혈성 뇌병증의 치료제로서 그 기전이 명확하게 밝혀지지 않았다. 저자들은 유전자 재조합 인 에리스로포이에틴(recombinant Human EPO, rHuEPO)을 이용하여 주산기 저산소성 허혈성 뇌병증의 치료제로서 N-methyl-D-aspartate (NMDA) 수용체와 관련된 흥분성 독성작용을 통한 조절 등 그 기전을 알아보고자 하였다. 방 법 : 재태기간 19일된 태아 백서의 대뇌피질 세포를 배양하여 정상산소군은 5% $CO_2$ 배양기(95% air, 5% $CO_2$)에 두었고, 저산소군과 농도별 뇌손상 전 rHuEPO 투여군(1, 10, 100 IU/mL)은 1% $O_2$ 배양기(94% $N_2$, 5% $CO_2$)에서 6시간 동안 뇌세포손상을 유도하였다. 세포성장과 생존력을 평가하기 위해 MTT 실험을 시행하였다. 동물 모델에서는 생후 7일된 신생백서의 좌측 총 경동맥을 결찰한 후 6개 군; 정상산소군, sham-operated군, 저산소-허헐성군, 저산소-허헐성+vehicle군, 저산소-허헐성 손상 전 rHuEPO 투여군, 저산소-허헐성 손상 후 rHuEPO 투여군으로 나누었고, 저산소-허헐성 손상은 특별히 제작한 통속에서 2시간 동안 8% $O_2$ (8% $O_2$, 92% $N_2$)에 노출시켰다. rHuEPO은 뇌손상 전후 30분에 체중 kg당 1000 IU를 투여하였고, 저산소-허헐성 손상 후 7일째 조직을 실험하였다. 적출한 조직으로 H&E 염색을 하여 뇌손상을 형태학적으로 관찰하였다. 세포배양 및 동물실험에서 NMDA 수용체의 아단위인 NR1, NR2A, NR2B, NR2C, NR2D를 이용하여 실시간 중합효소연쇄반응을 실시하였다. 결 과 : 저산소군에서 세포 생존률은 정상산소군보다 60% 감소하였으며, rHuEPO 투여군(1, 10 IU/mL)은 80% 증가하였다. rHuEPO 투여군(100 IU/mL)은 회복되지 않았다. 우측 반구 대비 좌측 반구의 범위는 정상산소군 98.9%, sham-operated군 99.1%, 저산소-허헐성군 57.1%, 저산소-허헐성+vehicle군 57.0%, 저산소-허헐성 손상 전 rHuEPO 투여군 87.6%, 저산소-허헐성 손상 후 rHuEPO 투여군 91.6%으로 나타났다. NMDA 수용체의 아단위 생체외 실험에서 실시간 중합효소연쇄반응의 결과 NMDA 수용체 아단위 mRNA의 발현은 rHuEPO 투여군에서 저산소군보다 모두 증가하였다. 결 론 : 본 연구에서 rHuEPO은 흥분성 독성작용과 관련되어 NMDA 수용체를 조절하면서 저산소성 허헐성 뇌손상을 보호하는 것을 알 수 있었다.

Complex Pathophysiology of Abusive Head Trauma with Poor Neurological Outcome in Infants

  • Park, Young Soo
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권3호
    • /
    • pp.385-396
    • /
    • 2022
  • Abusive head trauma (AHT) in infants, especially acute subdural hematoma, has an extremely poor outcome. The most decisive and important finding is the appearance of a widespread low-density area on head computed tomography. This phenomenon was traditionally thought to be caused by cerebral ischemia. However, many other pathophysiological abnormalities have been found to be intricately involved. Recent studies have found that status epilepticus and hyperperfusion injures are the major causes. Another serious problem associated with AHT is cardiopulmonary arrest (CPA). Many infants are reported to visit to the hospital with CPA, and its pathophysiology has not been fully elucidated. This paper examines the background of these pathological conditions and associated factors and elucidate the pathophysiological mechanisms resulting in poor outcomes in AHT. In addition to the intensity of assault on the head, the peculiar pathophysiological characteristics in infants, as well as the social background specific to child abuse, are found to be associated with poor outcome.

Melatonin-Induced PGC-1α Improves Angiogenic Potential of Mesenchymal Stem Cells in Hindlimb Ischemia

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • 제28권3호
    • /
    • pp.240-249
    • /
    • 2020
  • Despite the therapeutic effect of mesenchymal stem cells (MSCs) in ischemic diseases, pathophysiological conditions, including hypoxia, limited nutrient availability, and oxidative stress restrict their potential. To address this issue, we investigated the effect of melatonin on the bioactivities of MSCs. Treatment of MSCs with melatonin increased the expression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α). Melatonin treatment enhanced mitochondrial oxidative phosphorylation in MSCs in a PGC-1α-dependent manner. Melatonin-mediated PGC-1α expression enhanced the proliferative potential of MSCs through regulation of cell cycle-associated protein activity. In addition, melatonin promoted the angiogenic ability of MSCs, including migration and invasion abilities and secretion of angiogenic cytokines by increasing PGC-1α expression. In a murine hindlimb ischemia model, the survival of transplanted melatonin-treated MSCs was significantly increased in the ischemic tissues, resulting in improvement of functional recovery, such as blood perfusion, limb salvage, neovascularization, and protection against necrosis and fibrosis. These findings indicate that the therapeutic effect of melatonin-treated MSCs in ischemic diseases is mediated via regulation of PGC-1α level. This study suggests that melatonin-induced PGC-1α might serve as a novel target for MSC-based therapy of ischemic diseases, and melatonin-treated MSCs could be used as an effective cell-based therapeutic option for patients with ischemic diseases.

당뇨흰쥐의 국소뇌허혈에 대한 양격산화탕(凉膈散火湯)의 면역조직화학적 연구 (Immunohistochemical Study of Yanggyuksanhwa-tang on Focal Cerebral Ischemia of Diabetic Rats)

  • 부일권;김연섭
    • 동의생리병리학회지
    • /
    • 제21권3호
    • /
    • pp.741-747
    • /
    • 2007
  • This study evaluated neuroprotective effects of Yanggyuksanhwa-tang (YST), which have been known to be efficacy in the treatment of the stroke and diabetes. on focal cerebral ischemia of diabetic rats. On primary experiment, diabetic condition in rats was induced by streptozotocin injection, then, focal cerebral ischemia was induced by the middle cerebral artery occlusion (MCAO) under the diabetic condition. Then neuroprotective effect of YST was observed with changes of infarct size and volume, expressions of c-Fos, Bax, and hypoxia inducible factor (HIF)-1${\alpha}$ in the brain tissues by using 2% 2,3,5-triphenyltetrazolium chloride (TTC) staining and immunohistochemistry. YST treatment showed a significant decrease of infarct size and volume induced by MCAO in diabetic rats. YST treatment showed a significant decrease of c-Fos and Bax positive neurons in cortex penumbra. YST treatment showed a decrease of HIF-l${\alpha}$ positive neurons in cortex penumbra, but it was not significant statistically. These results suggest that YST has effects on neuroprotection against cerebral infarct under diabetic condition. And it is supposed that neuroprotective effect of YST reveals by anti-apoptosis mechanism.

Dihydropyrimidinase related protein-2 expression in focal ischemic rat brain and hypoxia-induced PC 12 cell

  • Chung, Myung-Ah;Kim, Hwa-Jung
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.199.1-199.1
    • /
    • 2003
  • Ischemia-induced changes in protein expression may provide important insights into the mechanisms of cellular damage and their potential recovery. In the present study, to investigate protein patterns changed in ischemic condition, the cortical and striatal tissue samples from the permanent and transient ischemic rat brain obtained by middle cerebral occlusion were analysed by proteomic approchese using 20-PAGE and MALOI-MS. (omitted)

  • PDF

Methanol Extract of Cassia mimosoides var. nomame and Its Ethyl Acetate Fraction Attenuate Brain Damage by Inhibition of Apoptosis in a Rat Model of Ischemia-Reperfusion

  • Kim, Ki-Hong;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • 제15권4호
    • /
    • pp.255-261
    • /
    • 2010
  • Ischemic stroke, a major cause of death and disability worldwide, is caused by occlusion of cerebral arteries that, coupled with or without reperfusion, results in prolonged ischemia (hypoxia and hypoglycemia) and, ultimately, brain damage. In this study, we examined whether methanol extract of the whole plant of Cassia mimosoides var. nomame Makino that grows naturally in Korea, as well as Japan and China, and some of its fractions obtained by partitioning with organic solvents could protect human hepatocellular carcinoma cells (HepG2) under hypoxic condition by inhibiting apoptosis. We also investigated if these extracts could attenuate brain damage in a rat model of 2 hr of ischemia, generated by middle cerebral artery occlusion, and 22 hr of reperfusion. The whole extract ($100{\mu}g$/mL) maintained the cell number at more than half of that initially plated, even after 24 hr of cell culture under hypoxic condition (3% $O_2$). In the absence of the whole extract, almost all of the cells were dead by this time point. This improvement of cell viability came from a delay of apoptosis, which was confirmed by observing the timing of the formation of a DNA ladder when assessed by gel electrophoresis. Of fractions soluble in hexane, ethyl acetate (EA), butanol and water, EA extracts were selected for the animal experiments, as they improved cell viability at the lowest concentration ($10{\mu}g$/mL). The whole extract (200 mg/kg) and EA extract (10 and 20 mg/kg) significantly reduced infarct size, a measure of brain damage, by 34.7, 33.8 and 45.2.0%, respectively, when assessed by 2,3,5-triphenyl tetrazolium chloride staining. The results suggest that intake of Cassia mimosoides var. nomame Makino might be beneficial for preventing ischemic stroke through inhibition of brain cell apoptosis.