• 제목/요약/키워드: Hypoxia inducible factor

검색결과 170건 처리시간 0.023초

Oxygen matters: hypoxia as a pathogenic mechanism in rhinosinusitis

  • Cho, Hyung-Ju;Kim, Chang-Hoon
    • BMB Reports
    • /
    • 제51권2호
    • /
    • pp.59-64
    • /
    • 2018
  • The airway epithelium is the first place, where a defense mechanism is initiated against environmental stimuli. Mucociliary transport (MCT), which is the defense mechanism of the airway and the role of airway epithelium as mechanical barriers are essential in innate immunity. To maintain normal physiologic function, normal oxygenation is critical for the production of energy for optimal cellular functions. Several pathologic conditions are associated with a decrease in oxygen tension in airway epithelium and chronic sinusitis is one of the airway diseases, which is associated with the hypoxic condition, a potent inflammatory stimulant. We have observed the overexpression of the hypoxia-inducible factor 1 (HIF-1), an essential factor for oxygen homeostasis, in the epithelium of sinus mucosa in sinusitis patients. In a series of previous reports, we have found hypoxia-induced mucus hyperproduction, especially by MUC5AC hyperproduction, disruption of epithelial barrier function by the production of VEGF, and down-regulation of junctional proteins such as ZO-1 and E-cadherin. Furthermore, hypoxia-induced inflammation by HMGB1 translocation into the cytoplasm results in the release of IL-8 through a ROS-dependent mechanism in upper airway epithelium. In this mini-review, we briefly introduce and summarize current progress in the pathogenesis of sinusitis related to hypoxia. The investigation of hypoxia-related pathophysiology in airway epithelium will suggest new insights on airway inflammatory diseases, such as rhinosinusitis for clinical application and drug development.

Serial Expression of Hypoxia Inducible Factor-$1{\alpha}$ and Neuronal Apoptosis in Hippocampus of Rats with Chronic Ischemic Brain

  • Yu, Chi-Ho;Moon, Chang-Taek;Sur, Jung-Hyang;Chun, Young-Il;Choi, Won-Ho;Yhee, Ji-Young
    • Journal of Korean Neurosurgical Society
    • /
    • 제50권6호
    • /
    • pp.481-485
    • /
    • 2011
  • Objective : The purpose of this study is to investigate serial changes of hypoxia-inducible factor $1{\alpha}$ (HIF-$1{\alpha}$), as a key regulator of hypoxic ischemia, and apoptosis of hippocampus induced by bilateral carotid arteries occlusion (BCAO) in rats. Methods : Adult male Wistar rats were subjected to the permanent BCAO. The time points studied were 1, 2, 4, 8, and 12 weeks after occlusions, with n=6 animals subjected to BCAO, and n=2 to sham operation at each time point, and brains were fixed by intracardiac perfusion fixation with 4% neutral-buffered praraformaldehyde for brain section preparation. Immunohistochemistry (IHC), western blot and terminal uridine deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were performed to evaluate HIF-$1{\alpha}$ expression and apoptosis. Results : In IHC and western blot, HIF-$1{\alpha}$ levels were found to reach the peak at the 2nd week in the hippocampus, while apoptotic neurons, in TUNEL assay, were maximal at the 4th week in the hippocampus, especially in the cornu ammonis 1 (CA1) region. HIF-$1{\alpha}$ levels and apoptosis were found to fluctuate during the time course. Conclusion : This study showed that BCAO induces acute ischemic responses for about 4 weeks then chronic ischemia in the hippocampus. These in vivo data are the first to show the temporal sequence of apoptosis and HIF-$1{\alpha}$ expression.

Expression of Hypoxia-inducible Factor Prolyl Hydroxylase 3 HIFPH3 in Human Non-small Cell Lung Cancer (NSCLC) and Its Correlation with Prognosis

  • Chu, Xiao;Zhu, Cheng-Chu;Liu, Hui;Wang, Jiao-Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5819-5823
    • /
    • 2014
  • Purpose: To investigate the expression of hypoxia-inducible factor prolyl hydroxylase 3 (HIFPH3) in non-small cell lung cancer (NSCLC) and explore the correlation of HIFPH3 expression with lymph node metastasis and microvessel density (MVD). Materials and Methods: A total of 73 cases of NSCLC specimens, 24 cases of para-cancerous tissues, and 20 normal pulmonary tissues were collected for HIFPH3 and CD31 immunohistochmical (IHC) study. Microvessel density (MVD) of the NSCLC tissues was also determined based on the expression of CD31. Results: The expression of HIFPH3 in carcinoma tissue was statistically higher than para-cancerous and normal pulmonary tissues (${\chi}^2=48.806$, p<0.05). Compared withthe negative lymph node metastasis group, the lymph node metastasis group showed significantly higher HIFPH3 expression (${\chi}^2=6.300$, p<0.05). The strong HIFPH3+group displayed a significantly higher MVD than weak HIFPH3+ and HIFPH3- groups (p<0.05). No differences in positive HIFPH3 expression were noted regarding the tumor diameter, age, smoking status, gender of NSCLC patients, tumor size, histopathology, or differentiation. Conclusions: HIFPH3 expression in human NSCLC lesions is significantly higher than that in para-cancerous and normal lung tissues and is positively associated with lymph node metastasis and MVD.

Effects of hypoxia inducible factors-$1{\alpha}$ on autophagy and invasion of trophoblasts

  • Choi, Jong-Ho;Lee, Hyun-Jung;Yang, Tae-Hyun;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제39권2호
    • /
    • pp.73-80
    • /
    • 2012
  • Objective: This study was undertaken to determine the effect of hypoxia inducible factor (HIF)-$1{\alpha}$ on the cell death, autophagy, and invasion of trophoblasts. Methods: To understand the effect of HIF-$1{\alpha}$, we inhibited HIF-$1{\alpha}$ using siRNA under normoxia and hypoxia conditions. Invasion assay and zymography were performed to determine changes in the invasion ability of HIF-$1{\alpha}$. Western blotting and immunofluorescence were performed to determine some of the signal events involved in apoptosis and autophagy. Results: There was no difference in cell death through the inhibition of HIF-$1{\alpha}$ expression by siRNA; however, the expression of LC3 and autophagosome formation increased. On the other hand, autophagy was increased, and the invasive ability of trophoblast cells decreased according to the inhibition of HIF-$1{\alpha}$ expression by siRNA. These experimental results mean that HIF-$1{\alpha}$ genes regulate the invasive ability of trophoblasts by increasing autophagy. Conclusion: This study contributes important data for understanding the mechanism of early pregnancy implantation and the invasive ability of trophoblasts by defining the relationship between the roles of HIF-$1{\alpha}$ and autophagy.

Hypoxic repression of CYP7A1 through a HIF-1α- and SHP-independent mechanism

  • Moon, Yunwon;Park, Bongju;Park, Hyunsung
    • BMB Reports
    • /
    • 제49권3호
    • /
    • pp.173-178
    • /
    • 2016
  • Liver cells experience hypoxic stress when drug-metabolizing enzymes excessively consume O2 for hydroxylation. Hypoxic stress changes the transcription of several genes by activating a heterodimeric transcription factor called hypoxia-inducible factor-1α/β (HIF-1α/β). We found that hypoxic stress (0.1% O2) decreased the expression of cytochrome P450 7A1 (CYP7A1), a rate-limiting enzyme involved in bile acid biosynthesis. Chenodeoxycholic acid (CDCA), a major component of bile acids, represses CYP7A1 by activating a transcriptional repressor named small heterodimer partner (SHP). We observed that hypoxia decreased the levels of both CDCA and SHP, suggesting that hypoxia repressed CYP7A1 without inducing SHP. The finding that overexpression of HIF-1α increased the activity of the CYP7A1 promoter suggested that hypoxia decreased the expression of CYP7A1 in a HIF-1-independent manner. Thus, the results of this study suggested that hypoxia decreased the activity of CYP7A1 by limiting its substrate O2, and by decreasing the transcription of CYP7A1.

1-Benzyl indazole derivative-based 18F-labeled PET radiotracer: Radiosynthesis and cell uptake study in cancer cells

  • More, Kunal N.;Lee, Jun Young;Park, Jeong-Hoon;Chang, Dong-Jo
    • 대한방사성의약품학회지
    • /
    • 제5권1호
    • /
    • pp.36-47
    • /
    • 2019
  • Hypoxia-inducible factor-1 ($HIF-1{\alpha}$) is a transcription factor activated in response to low oxygen level, and is highly expressed in many solid tumors. Moreover, $HIF-1{\alpha}$ is a representative biomarker of hypoxia and also helps to maintain cell homeostasis under hypoxic condition. Most solid tumors show hypoxia, which induces poor prognosis and resistance to conventional cancer therapies. Thus, early diagnosis of hypoxia with positron emission tomography (PET) radiotracer would be highly beneficial for management of malignant solid tumors with effective cancer therapy. YC-1 is a most promising candidate among several $HIF-1{\alpha}$ inhibitors. As an effort to develop a hypoxia imaging tool as a PET radiotracer, we designed and synthesized [$^{18}F$]DFYC based on potent derivative of YC-1 and performed preliminary in vitro cell uptake study. [$^{18}F$]DFYC showed a significant accumulation in SKBR-3 cells among other cancer cells, proving as a good lead to develop a hypoxic solid tumor such as breast cancer.

Hypoxia-inducible factor: role in cell survival in superoxide dismutase overexpressing mice after neonatal hypoxia-ischemia

  • Jeon, Ga Won;Sheldon, R. Ann;Ferriero, Donna M.
    • Clinical and Experimental Pediatrics
    • /
    • 제62권12호
    • /
    • pp.444-449
    • /
    • 2019
  • Background: Sixty percent of infants with severe neonatal hypoxic-ischemic encephalopathy die, while most survivors have permanent disabilities. Treatment for neonatal hypoxic-ischemic encephalopathy is limited to therapeutic hypothermia, but it does not offer complete protection. Here, we investigated whether hypoxia-inducible factor (HIF) promotes cell survival and suggested neuroprotective strategies. Purpose: HIF-1α deficient mice have increased brain injury after neonatal hypoxia-ischemia (HI), and the role of HIF-2α in HI is not well characterized. Copper-zinc superoxide dismutase (SOD)1 overexpression is not beneficial in neonatal HI. The expression of HIF-1α and HIF-2α was measured in SOD1 overexpressing mice and compared to wild-type littermates to see if alteration in expression explains this lack of benefit. Methods: On postnatal day 9, C57Bl/6 mice were subjected to HI, and protein expression was measured by western blotting in the ipsilateral cortex of wild-type and SOD1 overexpressing mice to quantify HIF-1α and HIF-2α. Spectrin expression was also measured to characterize the mechanism of cell death. Results: HIF-1α protein expression did not significantly change after HI injury in the SOD1 overexpressing or wild-type mouse cortex. However, HIF-2α protein expression increased 30 minutes after HI injury in the wild-type and SOD1 overexpressing mouse cortex and decreased to baseline value at 24 hours after HI injury. Spectrin 145/150 expression did not significantly change after HI injury in the SOD1 overexpressing or wild-type mouse cortex. However, spectrin 120 expression increased in both wild-type and SOD1 overexpressing mouse at 4 hours after HI, which decreased by 24 hours, indicating a greater role of apoptotic cell death. Conclusion: HIF-1α and HIF-2α may promote cell survival in neonatal HI in a cell-specific and regional fashion. Our findings suggest that early HIF-2α upregulation precedes apoptotic cell death and limits necrotic cell death. However, the influence of SOD was not clarified; it remains an intriguing factor in neonatal HI.

Hypoxia-induced Angiogenesis during Carcinogenesis

  • 최규실;배문경;정주원;문효은;김규원
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.120-127
    • /
    • 2003
  • The formation of new blood vessels, angiogenesis, is an essential process during development and disease. Angiogenesis is well known as a crucial step in tumor growth and progression. Angiogenesis is induced by hypoxic conditions and regulated by the hypoxia-inducible factor 1 (HIF-1). The expression of HIF-1 correlates with hypoxia-induced angiogenesis as a result of the induction of the major HIF-1 target gene, vascular endothelial cell growth factor (VEGF). In this review, a brief overview of the mechanism of angiogenesis is discussed, focusing on the regulatory processes of the HIF-1 transcription factor. HIF-1 consists of a constitutively expressed HIF-1 beta(HIF-1β) subunit and an oxygen-regulated HIF-1 alpha(HIF-1α) subunit. The stability and activity of HIF-1α are regulated by the interaction with various proteins, such as pVHL, p53, and p300/CBP as well as by post-translational modifications, hydroxylation, acetylation, and phosphorylation. It was recently reported that HIF-1α binds a co-activator of the AP-1 transciption factor, Jab-1, which inhibits the p53-dependent degradation of HIF-1 and enhances the transcriptional activity of HIF-1 and the subsequent VEGF expression under hypoxic conditions. ARD1 acetylates HIF-1α and stimulates pVHL-mediated ubiquitination of HIF-1α. With a growing knowledge of the molecular mechanisms in this field, novel strategies to prevent tumor angiogenesis can be developed, and form these, new anticancer therapies may arise.

단삼 유래 단일 물질 cryptotanshione의 전립선 암주에서의 HIF-1alpha와 STAT3 억제를 통한 신생혈관억제효과 (Anti-angiogenic Effect of Cryptotanshinone through Inhibition of HIF-1alpha and STAT3 in Prostate Cancer Cells)

  • 이효정;홍상혁;김성훈
    • 동의생리병리학회지
    • /
    • 제26권4호
    • /
    • pp.437-440
    • /
    • 2012
  • Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates various cellular processes such as cell survival, angiogenesis and proliferation. In the present study, we examined that Cryptotanshione(CT), a tanshinone from oriental traditional medicinal herb Danshen (Salvia miltiorrhiza Bunge), had the inhibitory effects on hypoxia-mediated activation of STAT3 in androgen independent human prostate cancer PC-3 cells. CT inhibited the protein expression of hypoxia-inducible factor-1alpha (HIF-$1{\alpha}$) under hypoxic condition. Consistently, CT blocked hypoxia-induced phosphorylation and nuclear accumulation of STAT3. In addition, CT reduced cellular of vascular endothelial growth factor (VEGF), a critical angiogenic factor and a target gene of STAT3 induced under hypoxia. Of note, chromatin immunoprecipitation (ChiP) assay revealed that CT inhibited binding of STAT3 to VEGF promoter. Taken together, our results suggest that CT has anti-angiogenic activity by disturbing the binding STAT3 to the VEGF promoter in PC-3 cells.