• 제목/요약/키워드: Hypoxia Adaptation

검색결과 23건 처리시간 0.017초

고혈압 동물에서 혈압변동과 적혈구변형능의 상관성 (Relationship between Blood Pressure Changes and Erythrocyte Deformability in Hypertensive Rats)

  • 고광호;이명걸;김낙두;조윤성;권석윤;윤재순
    • 약학회지
    • /
    • 제31권5호
    • /
    • pp.308-314
    • /
    • 1987
  • In cardiovascular disease the flow adaptation of erythrocytes can be affected by reduced shear stresses and metabolic influences on red cell fluidity as a consequence of tissue hypoxia. In addition there are indications that risk factors of cardiovascular diseases are able to decrease the intrinsic red cell deformability. Erythrocyte deformability was studied by the filtration technique of Reid et al. to investigate the relationship between blood pressure chances and erythrocyte deformability. In this experiment normotensive rats, spontaneously and DOCA-salt treated hypertensive rats were used. Erythrocyte deformability was significantly reduced by blood pressure elevation in hypertensive rats but was not fully recovered by normalization of blood pressure after antihypertensive drug treatment. Therefore other factors than blood pressure may be involved in erythrocyte deformability reduction during blood pressure elevation.

  • PDF

Integrated analysis of transcriptomic and proteomic analyses reveals different metabolic patterns in the livers of Tibetan and Yorkshire pigs

  • Duan, Mengqi;Wang, Zhenmei;Guo, Xinying;Wang, Kejun;Liu, Siyuan;Zhang, Bo;Shang, Peng
    • Animal Bioscience
    • /
    • 제34권5호
    • /
    • pp.922-930
    • /
    • 2021
  • Objective: Tibetan pigs, predominantly originating from the Tibetan Plateau, have been subjected to long-term natural selection in an extreme environment. To characterize the metabolic adaptations to hypoxic conditions, transcriptomic and proteomic expression patterns in the livers of Tibetan and Yorkshire pigs were compared. Methods: RNA and protein were extracted from liver tissue of Tibetan and Yorkshire pigs (n = 3, each). Differentially expressed genes and proteins were subjected to gene ontology and Kyoto encyclopedia of genes and genomes functional enrichment analyses. Results: In the RNA-Seq and isobaric tags for relative and absolute quantitation analyses, a total of 18,791 genes and 3,390 proteins were detected and compared. Of these, 273 and 257 differentially expressed genes and proteins were identified. Evidence from functional enrichment analysis showed that many genes were involved in metabolic processes. The combined transcriptomic and proteomic analyses revealed that small molecular biosynthesis, metabolic processes, and organic hydroxyl compound metabolic processes were the major processes operating differently in the two breeds. The important genes include retinol dehydrogenase 16, adenine phosphoribosyltransferase, prenylcysteine oxidase 1, sorbin and SH3 domain containing 2, ENSSSCG00000036224, perilipin 2, ladinin 1, kynurenine aminotransferase 1, and dimethylarginine dimethylaminohydrolase 1. Conclusion: The findings of this study provide novel insight into the high-altitude metabolic adaptation of Tibetan pigs.

Mechanism of the natural product moracin-O derived MO-460 and its targeting protein hnRNPA2B1 on HIF-1α inhibition

  • Soung, Nak-Kyun;Kim, Hye-Min;Asami, Yukihiro;Kim, Dong Hyun;Cho, Yangrae;Naik, Ravi;Jang, Yerin;Jang, Kusic;Han, Ho Jin;Ganipisetti, Srinivas Rao;Cha-Molstad, Hyunjoo;Hwang, Joonsung;Lee, Kyung Ho;Ko, Sung-Kyun;Jang, Jae-Hyuk;Ryoo, In-Ja;Kwon, Yong Tae;Lee, Kyung Sang;Osada, Hiroyuki;Lee, Kyeong;Kim, Bo Yeon;Ahn, Jong Seog
    • Experimental and Molecular Medicine
    • /
    • 제51권2호
    • /
    • pp.1.1-1.14
    • /
    • 2019
  • Hypoxia-inducible factor-$1{\alpha}$ ($HIF-1{\alpha}$) mediates tumor cell adaptation to hypoxic conditions and is a potentially important anticancer therapeutic target. We previously developed a method for synthesizing a benzofuran-based natural product, (R)-(-)-moracin-O, and obtained a novel potent analog, MO-460 that suppresses the accumulation of $HIF-1{\alpha}$ in Hep3B cells. However, the molecular target and underlying mechanism of action of MO-460 remained unclear. In the current study, we identified heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) as a molecular target of MO-460. MO-460 inhibits the initiation of $HIF-1{\alpha}$ translation by binding to the C-terminal glycinerich domain of hnRNPA2B1 and inhibiting its subsequent binding to the 3'-untranslated region of $HIF-1{\alpha}$ mRNA. Moreover, MO-460 suppresses $HIF-1{\alpha}$ protein synthesis under hypoxic conditions and induces the accumulation of stress granules. The data provided here suggest that hnRNPA2B1 serves as a crucial molecular target in hypoxiainduced tumor survival and thus offer an avenue for the development of novel anticancer therapies.