• Title/Summary/Keyword: Hypoxia

Search Result 809, Processing Time 0.034 seconds

Biodistribution and PET imaging of [18F]FMISO in mousecolon cancer xenografted mice

  • Seelam, Sudhakara Reddy;Lee, Ji Youn;Kim, Young Joo;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • Hypoxia is an important adverse prognostic factor for tumor progression and is a major cause of failure of radiation therapy. In case of short-term hypoxia, the metabolism can recover to normal, but if hypoxia persists, it causes irreversible cell damage and finally leads to death. So a hypoxia marker would be very useful in oncology. In particular, 2-nitroimidazole can be reduced to form a reactive chemical species, which can bind irreversibly to cell components in the absence of sufficient oxygen, thus, the development of radiolabeled nitroimidazole derivatives for the imaging of hypoxia remains an active field of research to improve cancer therapy result. 2-nitroimidazole based hypoxia marker, [$^{18}F$]FMISO holds promise for the evaluation of tumor hypoxia by Positron emission tomography (PET), at both global and local levels. In the present study, [$^{18}F$]FMISO was synthesized using an automatic synthesis module with high radiochemical purity (>99%) in 60 min. Immunohistochemical analysis using pimonidazole confirmed the presence of hypoxia in xenografted CT-26 tumor tissue. A biodistribution study in CT-26 xenografted mice showed that the increased tumor-to-muscle ratio and tumor-to-blood ratios from 10 to 120 min post-injection. In the PET study, [$^{18}F$]FMISO also showed increased tumor-to-muscle ratios from 10 to 120 min post-injection. In conclusion, this study demonstrates the feasibility and utility of [$^{18}F$]FMISO for imaging hypoxiain mouse colon cancer model using small animal PET.

Induction of Angiogenesis by Malarial Infection through Hypoxia Dependent Manner

  • Park, Mi-Kyung;Ko, Eun-Ji;Jeon, Kyung-Yoon;Kim, Hyunsu;Jo, Jin-Ok;Baek, Kyung-Wan;Kang, Yun-Jeong;Choi, Yung Hyun;Hong, Yeonchul;Ock, Mee Sun;Cha, Hee-Jae
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.2
    • /
    • pp.117-125
    • /
    • 2019
  • Malarial infection induces tissue hypoxia in the host through destruction of red blood cells. Tissue hypoxia in malarial infection may increase the activity of $HIF1{\alpha}$ through an intracellular oxygen-sensing pathway. Activation of $HIF1{\alpha}$ may also induce vascular endothelial growth factor (VEGF) to trigger angiogenesis. To investigate whether malarial infection actually generates hypoxia-induced angiogenesis, we analyzed severity of hypoxia, the expression of hypoxia-related angiogenic factors, and numbers of blood vessels in various tissues infected with Plasmodium berghei. Infection in mice was performed by intraperitoneal injection of $2{\times}10^6$ parasitized red blood cells. After infection, we studied parasitemia and survival. We analyzed hypoxia, numbers of blood vessels, and expression of hypoxia-related angiogenic factors including VEGF and $HIF1{\alpha}$. We used Western blot, immunofluorescence, and immunohistochemistry to analyze various tissues from Plasmodium berghei-infected mice. In malaria-infected mice, parasitemia was increased over the duration of infection and directly associated with mortality rate. Expression of VEGF and $HIF1{\alpha}$ increased with the parasitemia in various tissues. Additionally, numbers of blood vessels significantly increased in each tissue type of the malaria-infected group compared to the uninfected control group. These results suggest that malarial infection in mice activates hypoxiainduced angiogenesis by stimulation of $HIF1{\alpha}$ and VEGF in various tissues.

Hypoxia Enhances Nitric Oxide Synthesis by Upregulation of Inducible Nitric Oxide Synthase in Endothelial Cells

  • Rhee, Ki-Jong;Gwon, Sun-Yeong;Lee, Seunghyung
    • Biomedical Science Letters
    • /
    • v.19 no.3
    • /
    • pp.180-187
    • /
    • 2013
  • Hypoxia is an integral part of the environment during luteolysis. In this study we examined whether hypoxia could directly stimulate endothelial cells to produce nitric oxide (NO). Endothelial cells were cultured in hypoxic (5% $O_2$) or normoxic (20% $O_2$) conditions and the levels of total NO, inducible NO and endothelial NO was measured. We found that hypoxia but not normoxia upregulated NO production. The increased NO levels correlated with increased inducible NO synthase (iNOS) expression whereas expression of endothelial NOS (eNOS) expression remained constant. Addition of the iNOS specific inhibitor 1400W to hypoxic cultures prevented NO production suggesting that hypoxia-induced NO production in endothelial cells was due mainly to upregulation of iNOS. We also found that prostaglandin $F_{2{\alpha}}$ (PGF) production was unaffected by hypoxia suggesting that upregulation of NO was not due to increased synthesis of PGF. In summary, we report that endothelial cells cultured under hypoxic conditions produce NO via the iNOS pathway. This study provides the importance of the relation between the hypoxic environment and the induction of NO by endothelial cells during regression of the corpus luteum in the ovary.

Oxygen matters: hypoxia as a pathogenic mechanism in rhinosinusitis

  • Cho, Hyung-Ju;Kim, Chang-Hoon
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.59-64
    • /
    • 2018
  • The airway epithelium is the first place, where a defense mechanism is initiated against environmental stimuli. Mucociliary transport (MCT), which is the defense mechanism of the airway and the role of airway epithelium as mechanical barriers are essential in innate immunity. To maintain normal physiologic function, normal oxygenation is critical for the production of energy for optimal cellular functions. Several pathologic conditions are associated with a decrease in oxygen tension in airway epithelium and chronic sinusitis is one of the airway diseases, which is associated with the hypoxic condition, a potent inflammatory stimulant. We have observed the overexpression of the hypoxia-inducible factor 1 (HIF-1), an essential factor for oxygen homeostasis, in the epithelium of sinus mucosa in sinusitis patients. In a series of previous reports, we have found hypoxia-induced mucus hyperproduction, especially by MUC5AC hyperproduction, disruption of epithelial barrier function by the production of VEGF, and down-regulation of junctional proteins such as ZO-1 and E-cadherin. Furthermore, hypoxia-induced inflammation by HMGB1 translocation into the cytoplasm results in the release of IL-8 through a ROS-dependent mechanism in upper airway epithelium. In this mini-review, we briefly introduce and summarize current progress in the pathogenesis of sinusitis related to hypoxia. The investigation of hypoxia-related pathophysiology in airway epithelium will suggest new insights on airway inflammatory diseases, such as rhinosinusitis for clinical application and drug development.

The effects of Chenwangbosim-Dan and herbs on Mouse neuroblastoma 2a cells damaged by hypoxia-reoxygenation (천왕보심단(天王補心丹)과 단미(單味)들이 Hypoxia-Reoxygenation에 의해 손상받은 Mouse Neuroblastoma 2a Cells에미치는 영향(影響))

  • Kim, Sang-Ho;Kim, Jong-Woo;Kang, Chul-Hun;Whang, Wei-Wan
    • Journal of Oriental Neuropsychiatry
    • /
    • v.17 no.2
    • /
    • pp.15-36
    • /
    • 2006
  • Objective : This study was designed to assess effect of and Chenwangbosim-Dan(CWBSD) herbs on Mouse neuroblastoma 2a cells damaged by hypoxia-reoxygenation. Method : Mouse neuroblastoma 2a (N2a) cells were measured by MTT assay and LDH assay after 48h hypoxia and 6h reoxygenation. Mouse neuroblastoma 2a (N2a) cells were treated by CWBSD and herbs. Result : 1. In MTT assay of hypoxia CWBSD and BJI, SJH, IS, CHR, HS among all of herbs were effective. Especially CWBSD and IS were highly effective. 2. In MTT assay of reoxygenation SJI, SJH, VJ, IS, BJI were effective. Especially SJI, SJH, YJ were highly effective. 3. In LDH assay of hypoxia CWBSD, DS, DG, SJH, OMZ were effective. Especially CWBSD, DG were highly effective. 4. In LDH assay of reoxygenation all of herbs except CWBSD and BJI were generally effective. Especially CHR, SJH, YJ, OMZ, HS were highly effective. Conclusion : The results suggest that CWBSD, and it's ingradient(especially SJH, CHR and SJI) may have protective effect on condition of oxidative stress.

  • PDF

Effects of Vitamins C and E on Hepatic Drug Metabolizing Function in Nypoxia/Reoxygenation (저산소 및 산소재도입시 vitamin C와 E가 간장 약물대사 기능에 미치는 영향)

  • 윤기욱;이상호;이선미
    • YAKHAK HOEJI
    • /
    • v.44 no.3
    • /
    • pp.237-244
    • /
    • 2000
  • Liver isolated from 18 hours fasted rats was subjected to $N_2$hypoxia (for 45 min) followed by reoxygenation (for 30 min). The perfusion medium used was Krebs-Henseleit bicarbonate buffer (pH 7.4, $37^{\circ}C$). Vitamin C (0.5 mM) and trolox C (0.5 mM), soluble vitamin E analog, were added to perfusate. Lactate dehydrogenase (LDH), total glutathione, oxidized glutathione, lipid peroxide and drug-metabolizing enzymes were measured. After hypoxia LDH significantly increased but this increase was attenuated by vitamin C and combination of vitamin C and E. Total glutathione and oxidized glutathione in perfusate markedly increased during hypoxia and this increase was inhibited by vitamins C, E and its combination. Similarly; oxidized glutathione and lipid peroxide in liver tissue increased after hypoxia and reoxygenation and this increase was inhibited by vitamin I and combination of vitamin C and E. Hepatic drug metabolizing function (phase I, II) were suppressed during hypoxia but improved during reoxygenation. While vitamins C and E only increased glucuronidation, the combination of vitamin C and E increased the oxidation, glucuronidation and sulfation. Our findings suggest that vitamins C and E synergistically ameliorates hepatocellular damage as indicated by abnormalities in drug metabolizing function during hypoxia/reoxygenation and that this protection is in major part, caused by decreased oxidative stress.

  • PDF

Study on Mechanical Responses Induced by Hypoxia in Porcine Isolated Cerebral Artery (돼지 적출뇌혈관의 저산소 유발 수축반응에 관하여)

  • Kim, Yoong
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.203-212
    • /
    • 1993
  • This study was designed to observe hypoxia-induced mechanical responses of porcine cerebral artery and to clarify their possible mechanisms. Hypoxia produced a transient vasoconstriction, recovering to the basal tension within 10 min and subsequent reoxygenation produced a biphasic (relaxalion-contraction) response in rings with endothelium under resting tension. Hypoxia produced a further contraction in rings precontracted with KCl or $PGF_{2{\alpha}}$, and following reoxygenation caused only sustained relaxation. Removal of the endothelium and pretreatment with nimodipine or indomethacin markedly attenuated the hypoxia- and reoxygenation-induced contractions. The KCl-induced contraction was not affected in hypoxic state, but contractions induced by $PGF_{2{\alpha}}$ or endothelin (ET) were inhibited in the hypoxia, the latter being more sensitive to the hypoxia. Upon reoxygenation, the attenuated contraction rapidly recovered to the original tension. Both hypoxia and reoxygenation significantly increased cyclic GMP content in the intact preparations, but not in the endothelium-removed ones. Acetylcholine (ACh) produced concentration-dependent relaxations in the intact endothelial rings precontracted with $PGF_{2{\alpha}}$ or endothelin, and the ACh-induced relaxation was inhibited by removal of endothelium and by hypoxia. ACh also increased cyclic GMP content in tissues pretreated with $PGF_{2{\alpha}}$ and the increase of cyclic GMP was abolished in hypoxic state. These results suggest that hypoxia- and reoxygenation-induced contractions are dependent on endothelium and extracellular calcium, and related to the release of prostaglandin-like substance(s).

  • PDF

Acute Hypoxia Activates an ENaC-like Channel in Rat Pheochromocytoma (PC12) Cells

  • Bae, Yeon Ju;Yoo, Jae-Cheal;Park, Nammi;Kang, Dawon;Han, Jaehee;Hwang, Eunmi;Park, Jae-Yong;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.57-64
    • /
    • 2013
  • Cells can resist and even recover from stress induced by acute hypoxia, whereas chronic hypoxia often leads to irreversible damage and eventually death. Although little is known about the response(s) to acute hypoxia in neuronal cells, alterations in ion channel activity could be preferential. This study aimed to elucidate which channel type is involved in the response to acute hypoxia in rat pheochromocytomal (PC12) cells as a neuronal cell model. Using perfusing solution saturated with 95% $N_2$ and 5% $CO_2$, induction of cell hypoxia was confirmed based on increased intracellular $Ca^{2+}$ with diminished oxygen content in the perfusate. During acute hypoxia, one channel type with a conductance of about 30 pS (2.5 pA at -80 mV) was activated within the first 2~3 min following onset of hypoxia and was long-lived for more than 300 ms with high open probability ($P_o$, up to 0.8). This channel was permeable to $Na^+$ ions, but not to $K^+$, $Ca^+$, and $Cl^-$ ions, and was sensitively blocked by amiloride (200 nM). These characteristics and behaviors were quite similar to those of epithelial sodium channel (ENaC). RT-PCR and Western blot analyses confirmed that ENaC channel was endogenously expressed in PC12 cells. Taken together, a 30-pS ENaC-like channel was activated in response to acute hypoxia in PC12 cells. This is the first evidence of an acute hypoxia-activated $Na^+$ channel that can contribute to depolarization of the cell.

Effects of Hypoxia on Root Growth and Anaerobic Fermentative Enzymes in Winter Cereal Seedlings (저산소 조건하에서 맥류 유묘의 근생장 및 혐기발효 효소의 반응)

  • Park Myoung Ryoul;Lim Jeong Hyun;Yoo Nam Hee;Kwon In Sook;Kim Jung Gon;Choi Kyung Gu;Yun Song Joong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.6
    • /
    • pp.400-405
    • /
    • 2005
  • Wet-injury often occurs in upland cereals growing in the paddy field due to oxygen deficiency in the rhizosphere caused by excessive water in the soil. Under hypoxia, energy metabolism is diminished causing non­reversible damage to root cells. This study was conducted to investigate effects of hypoxia on root growth and enzymes involved in the fermentative energy metabolism in upland cereals including barley, wheat, rye and triticale. Young seedlings were subject to hypoxia for up to 7 days. Root fresh weight and dry weight were decreased significantly by hypoxia for 5 to 7 days in all cereal seedlings. Root growth retardation under hypoxia was lowest in barley. Hypoxia-induced increases in activity and isozyme expression of alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) were commonly observed in roots of all cereal seedlings. The inherent ADH activity levels were higher in barley but the hypoxia-induced increases in ADH activities were lowest in barley than other cereals. The inherent LDH activity levels were lower in barley and the hypoxia-induced increases in LDH activities were lower in barley than other cereals. The results suggest the importance of the rapid enhancement of fermentative enzyme systems for increased tolerance to hypoxia.

Whole-genome Transcriptional Responses to Hypoxia in Respiration-proficient and Respiration-deficient Yeasts: Implication of the Mitochondrial Respiratory Chain in Oxygen-regulated Gene Expression (저산소 환경에 대한 전체 유전자 발현 반응에서 미토콘드리아 호흡계의 연루)

  • Lee, Bo Young;Lee, Jong-Hwan;Byun, June-Ho;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1137-1152
    • /
    • 2016
  • Cells sense, respond, and adapt to a low oxygen environment called hypoxia, which is widely involved in a variety of human diseases. Adaptation to low oxygen concentrations includes gene expression changes by inducing hypoxic genes and reducing aerobic genes. Recently, the mitochondrial respiratory chain has been implicated in the control of these oxygen-regulated genes when cells experience hypoxia. In order to obtain an insight into an effect of the mitochondrial respiratory chain on cellular response to hyxpoxia, we here examined whole genome transcript signatures of respiration-proficient and respiration-deficient budding yeasts exposed to hypoxia using DNA microarrays. By comparing whole transcriptomes to hypoxia in respiration-proficient and respiration-deficient yeasts, we found that there are several classes of oxygen-regulated genes. Some of them require the mitochondrial respiratory chain for their expression under hypoxia while others do not. We found that the majority of hypoxic genes and aerobic genes need the mitochondrial respiratory chain for their expression under hypoxia. However, we also found that there are some hypoxic and aerobic genes whose expression under hypoxia is independent of the mitochondrial respiratory chain. These results indicate a key involvement of the mitochondrial respiratory chain in oxygen-regulated gene expression and multiple mechanisms for controlling oxygen-regulated gene expression. In addition, we provided gene ontology analyses and computational promoter analyses for hypoxic genes identified in the study. Together with differentially regulated genes under hypoxia, these post-analysis data will be useful resources for understanding the biology of response to hypoxia.