• Title/Summary/Keyword: Hypothalamus-pituitary axis

Search Result 56, Processing Time 0.028 seconds

Testosterone Regulates NUCB2 mRNA Expression in Male Mouse Hypothalamus and Pituitary Gland

  • Seon, Sojeong;Jeon, Daun;Kim, Heejeong;Chung, Yiwa;Choi, Narae;Yang, Hyunwon
    • Development and Reproduction
    • /
    • v.21 no.1
    • /
    • pp.71-78
    • /
    • 2017
  • Nesfatin-1/NUCB2 is known to take part in the control of the appetite and energy metabolism. Recently, many reports have shown nesfatin-1/NUCB2 expression and function in various organs. We previously demonstrated that nesfatin-1/NUCB2 expression level is higher in the pituitary gland compared to other organs and its expression is regulated by $17{\beta}-estradiol$ and progesterone secreted from the ovary. However, currently no data exist on the expression of nesfatin-1/NUCB2 and its regulation mechanism in the pituitary of male mouse. Therefore, we examined whether nesfatin-1/NUCB2 is expressed in the male mouse pituitary and if its expression is regulated by testosterone. As a result of PCR and western blotting, we found that a large amount of nesfatin-1/NUCB2 was expressed in the pituitary and hypothalamus. The NUCB2 mRNA expression level in the pituitary was decreased after castration, but not in the hypothalamus. In addition, its mRNA expression level in the pituitary was increased after testosterone treatment in the castrated mice, whereas, the expression level in the hypothalamus was significantly decreased after the treatment with testosterone. The in vitro experiment to elucidate the direct effect of testosterone on NUCB2 mRNA expression showed that NUCB2 mRNA expression was significantly decreased with testosterone in cultured hypothalamus tissue, but increased with testosterone in cultured pituitary gland. The present study demonstrated that nesfatin-1/NUCB2 was highly expressed in the male mouse pituitary and was regulated by testosterone. This data suggests that reproductive-endocrine regulation through hypothalamus-pituitary-testis axis may contribute to NUCB2 mRNA expression in the mouse hypothalamus and pituitary gland.

The Consequences of Mutations in the Reproductive Endocrine System

  • Choi, Donchan
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.235-251
    • /
    • 2012
  • The reproductive activity in male mammals is well known to be regulated by the hypothalamus-pituitary-gonad axis. The hypothalamic neurons secreting gonadotropin releasing hormone (GnRH) govern the reproductive neuroendocrine system by integrating all the exogenous information impinging on themselves. The GnRH synthesized and released from the hypothalamus arrives at the anterior pituitary through the portal vessels, provoking the production of the gonadotropins(follicle-stimulating hormone (FSH) and luteinizing hormone (LH)) at the same time. The gonadotropins affect the gonads to promote spermatogenesis and to secret testosterone. Testosterone acts on the GnRH neurons by a feedback loop through the circulatory system, resulting in the balance of all the hormones by regulating reproductive activities. These hormones exert their effects by acting on their own receptors, which are included in the signal transduction pathways as well. Unexpected aberrants are arised during this course of action of each hormone. This review summarizes these abnormal phenomena, including various mutations of molecules and their actions related to the reproductive function.

Insight into the pathogensis of polycystic ovarian syndrome

  • Jung, Yong Wook;Lee, Gun Ho;Han, You Jung;Cha, Dong Hyun
    • Journal of Genetic Medicine
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women, which is characterized by the oligo/anovulation, hyperandrogenism (HA) and polycystic ovarian morphology which are diagnostic criteria. PCOS has diverse clinical aspects in addition to those diagnostic criteria including increased risk for cardiovascular diseases, metabolic syndrome, dyslipidemia, type 2 diabetes and impaired fertility. Because of the heterogeneity of the disease, the pathogenesis of the disease has not been elucidated yet. Therefore, there is no cure for the endocrinopathy. HA and insulin resistance (IR) has been considered two major pillars of the pathogenesis of PCOS. Recent advances in animal studies revealed the critical role of neuroendocrine abnormalities in developing PCOS. Several pathways related to neuroendocrine origin have been investigated such as hypothalamus pituitary ovarian axis, hypothalamus pituitary adrenal axis and hypothalamus pituitary adipose axis. This review summarizes the current knowledge about the role of HA and IR in developing PCOS. In addition, we review the results of recent genome wide association studies for PCOS. This new perspective improves our understanding of the role of neuroendocrine origins in PCOS and suggest a novel potential therapeutic target for the treatment of PCOS.

Effect of Vinclozolin Administration on the Gene Expressions in Hypothalamus-Pituitary Axis of Immature Female Rats (미성숙 암컷 흰쥐 시상하부-뇌하수체 축 상의 유전자 발현에 미치는 Vinclozolin 투여 효과)

  • Lee, Woo-Cheol;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.97-105
    • /
    • 2008
  • Vinclozolin (VCZ) is a systemic fungicide commonly used in fruits, vegetables and the wine industry. VCZ and its metabolites, butenoic acid (M1) and enanilide (M2) derivatives, act as anti-androgens through actions on the androgen receptor. Although there is growing body of evidence that VCZ's action as an endocrine disrupting chemical (EDC) in male reproductive physiology and pathphysiology, no evidence on the VCZ's EDC action in female is available yet. Previously we found that the prepubertal VCZ exposures could effectively delay the onset of puberty in female rats, suggesting the postponed or weakened activities of hypothalamus-pituitary-ovary (H-P-O) reproductive hormonal axis. The present study was performed to examine whether the VCZ administration affects the transcriptional activities of reproductive hormone-related genes in the same animal model. VCZ (10 mg/kg/day) was administered daily from postnatal day 21 (PND 21) through the day when the first vaginal opening (V.O.) was observed. To determine the transcriptional changes of reproductive hormone-related genes in hypothalamus and pituitary, total RNAs were extracted and applied to the semiquantitative reverse transcription polymerase chain reaction (RT-PCR). As a result, treatment with VCZ significantly lowered the transcriptional activity of nitric oxide synthase-2 (NOS-2) which is known to adjust gonadotropin-releasing hormone (GnRH) secretion in the hypothalamus (p<0.01). Similarly, the mRNA levels of KiSS-1, G protein-coupled receptor 54 (GPR54) and GnRH were significantly decreased in hypothalamus (p<0.01) from VCZ-treated group. As expected, the transcriptional activities of luteinizing hormone-${\beta}$ (LH-${\beta}$) and follicle stimulating hormone-${\beta}$ (FSH-${\beta}$) in the anterior pituitary from VCZ-treated group were also significantly lower than those from the control group. The present study indicates that(i) the inhibitory effect of VCZ exposure on the onset of puberty in immature female rats could be derived from the reduced transcriptional activities of gonadotropin subunits and their upstream modulators such as GnRH and KiSS-1 in hypothalamus-pituitary neuroendocrine axis, and (ii) these inhibitory effects could be mediated by NO signaling pathway.

  • PDF

Peroxisome Proliferator-activated Receptor${\gamma}$ Is Involved in Weaning to Estrus of Primiparous Sows by Regulating the Expression of Hormone Genes in Hypothalamus-pituitary-ovary Axis

  • Kong, L.J.;Wang, A.G.;Fu, J.L.;Lai, CH.H.;Wang, X.F.;Lin, H.CH.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.340-350
    • /
    • 2007
  • The objective of this study was to determine whether peroxisome proliferator-activated receptor ${\gamma}$(PPAR${\gamma}$ is involved in the regulation of weaning to estrus of primiparous sows. Twelve sows composed of 6 groups of 2 full-sibs in a similar age (325.2 d), body weight (BW; 152.4 kg) and backfat thickness (BFT; 27.0 mm) at start of lactation, were allocated to accept 31 MJ (restricted group, R-group) or 53 MJ (control group, C-group) DE/d treatment, respectively. The experimental results indicated that the low energy intake resulted in excessive losses of BW and BFT during lactation in R-group sows, which may be related to decrease of serum 15-deoxy-${\Delta}^{12,14}$-prostaglandin $J_2$ (15d-$PGJ_2$), a ligand of PPAR${\gamma}$ The obvious peak and the frequency of LH, FSH and estradiol ($E_2$) were only observed in C-group sows. Except for $E_2$ at d 1 and 2, serum FSH, LH and $E_2$ concentrations in R-group were lower than those in C-group sows after weaning. However, the serum progesterone ($P_4$) level in R-group sows was always more than that in C-group. The expression abundances of PPAR${\gamma}$and GnRH receptor (GnRH-R) in pituitary, FSH receptor (FSH-R), LH receptor (LH-R), estrogen receptor (ES-R) and aromatase in ovary of anestrous sows were lower than those of estrous sows. Neither the BFT nor the BW was associated with the mRNA abundance of PPAR${\gamma}$in hypothalamus during lactation. Expressions of PPAR${\gamma}$in pituitary and ovary were affected evidently by the BFT changes and only by the loss of BW of sows during and after lactation. Furthermore, PPAR${\gamma}$mRNA level in ovary was significantly related to the expression abundances of GnRH-R, FSH-R, ES-R and aromatase, and GnRH-R was obviously associated with PPAR${\gamma}$expression in pituitary. However, PPAR${\gamma}$expression in hypothalamus likely has no effects on these genes expression and no obvious difference for all sows. Not serum $E_2$ or $P_4$ alone but the ratios of $E_2$ to $P_4$ and 15d-$PGJ_2$ to $P_4$, and serum FSH and LH were evidently related to PPAR${\gamma}$expression in pituitary and ovary. It is concluded that PPAR${\gamma}$is associated with body conditions, reproduction hormones and their receptor expression, which affected the functions of pituitary and ovary and ultimately the estrus after weaning of primiparous sows.

Expression of Maturation-Related Genes and Leptin during Sexual Maturation in the Female Goldfish: Effects of Exogenous Kisspeptin

  • Kim, Na Na;Choi, Young Jae;Oh, Sung-Yong;Choi, Cheol Young
    • Journal of Marine Life Science
    • /
    • v.1 no.1
    • /
    • pp.41-49
    • /
    • 2016
  • Kisspeptin (Kiss) and its cognate receptor, kisspeptin receptor (KissR; G protein coupled receptor 54, GPR54), have recently been recognized as potent regulators of reproduction in teleosts. Additionally, leptin plays an important role in energy homeostasis and reproductive function in teleosts. The purpose of this study was to examine differences in the concentration of the hormones of the Kiss/KissR system and leptin and the expression of their underlying genes, all of which are involved in the sexual maturation of female goldfish, Carassius auratus, following treatment with Kiss. The expression levels of KissR increased after the Kiss injection. Furthermore, the peptide hormone leptin also increased after the injection (in vivo and in vitro). Additionally, the expression of GnRH and GTHs (GTHα, FSHβ, and LHβ) increased in the brain and pituitary (in vitro and in vitro). These results support the hypothesis that Kiss plays important roles in the direct regulation of the hypothalamus-pituitary-gonad axis and leptin in goldfish. Therefore, we suggest that Kiss system gene expression is correlated with energy balance and reproduction.

Alteration of G$\beta$ Expression in Rat Brain by Stress

  • Myung, Chang-Seon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.83.1-83.1
    • /
    • 2003
  • The heterotrimeric G protein subunits (G ) are region-specifically expressed in brain such as hypothalamus and pituitary gland in abundant, suggesting that is may be associated with “stress-axis”. This study was designed to examine the effect of stress on the region-specific expression of various G subunits in rat brain. The localization of mRNAs encoding seven of G and striking region-specific patterns of expression were observed in 12 different regions of both non-stressed and stressed rat brain; (1) frontal cortex area, (2) cerebral cortex area, (3) striatum, (4) hippocampus area, (5) thalamus, (6) brain stem, (7) cerebellum area, (8) hypothalamus, (9) septum, (10) amygdala, (11) preoptic area, and (12) pituitary gland. (omitted)

  • PDF

Stress response: Physiological and Behavioral Aspects (스트레스반응의 생 행동적 접근)

  • Kim, Keum-Soon
    • Perspectives in Nursing Science
    • /
    • v.2 no.1
    • /
    • pp.61-75
    • /
    • 2005
  • Physical and psychological events can produce stress response in various degrees. Stress affects many aspects of physiology including both brain and peripheral elements which is represented as hypothalamus-pituitary-adrenal axis. Brain elements consist of corticotropin-releasing hormone(CRH), locus ceruleus(LC)-norepinephrine(NE)/autonomic system. Peripheral elements include pituitary-adrenal axis and the autonomic nervous system, which coordinate the stress response. Current trend of the stress researches is emphasizing the mechanisms of the stress response which is adaptive or become maladaptive. This review introduces 1) the concepts of stress, 2) physiological and behavioral aspects of stress responses, 3) the consequences of stress response, 4) the measurements of stress and 5) stress management for those interested in stress research.

  • PDF

Neural Substrates and Functional Hypothesis of Acupuncture Mechanisms - Neural substrates and humoral-, neural-, and immune-responses related to acupuncture stimulation- (침의 치료기전에 대한 신경기반 및 신경기능 가설 -침자극과 관계된 신경기반 및 체액성 반응, 신경적 반응, 면역반응-)

  • Cho, Z.H;Hwang, S.C;Wong, E.K.;Son, Y.D;Kang, C.K;Park, T.S;Bai, S.J;Sung, K.K
    • Journal of Acupuncture Research
    • /
    • v.20 no.5
    • /
    • pp.172-186
    • /
    • 2003
  • Acupuncture therapy has demonstrated efficacy in several clinical areas, and of these areas the understanding of pain has progressed immensely in the last two decades. The underlying mechanisms of acupuncture in general and the analgesic effect in particular are still not clearly delineated. The leading hypothesis include the effects of local stimulation, neuronal gating, release of endogenous opiates, and the placebo effect. Accumulating evidence suggests that the central nervous system(CNS) is essential for the processing of these effects, via its modulation of the autonomic nervous system, neuro-immune system, and hormonal regulation. These processes tap into basic survival mechanisms. As such, understanding the effects of acupuncture within a neuroscience-based framework becomes vital. We propose a model which incorporates the stress-induced hypothalamus-pituitary-adrenal axis(HPA-axis) model of Akil et al., the cholinergic anti-inflamatory observations of Tracey et al., and Petrovic et al.

  • PDF

Role of Ghrelin in the Control of Reproductive Endocrine Function (포유류 생식 내분비 기능 조절에서 Ghrelin의 역할)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.207-215
    • /
    • 2009
  • Numerous factors can affect the activities of hypothalamus-pituitary-gonad (HPG) hormonal axis, resulting in alteration of reproductive capacity or status such as onset of puberty and menopause. Soon after the finding of leptin, a multifunctional hormone secreted from adipocytes, a close relationship between reproduction and body energy balance have been manifested. Ghrelin, another multifunctional hormone from gastrointestinal tract, is an endogenous ligand of growth hormone secretagogue receptor (GHSR), and is thought to be a counterpart of leptin in the regulation of energy homeostasis. As expected, ghrelin can also modulate the reproductive capacity through the modulation of activities of HPG axis. This paper summarizes the current knowledge on the discovery, gene structures, tissue distribution and roles of ghrelin and GHSRs in mammalian reproduction in particular modulation of reproductive hormone secretion in HPG axis. Like POMC gene expression in pituitary gland, preproghrelin gene can generate a complex repertoire of transcripts which further undergo alternative splicing and posttranslational modifications. Concerning the roles of preproghrelin gene products in the control of body physiology except energy homeostasis, limited knowledge is available so far. Several lines of evidence, however, show the interplay of ghrelin between metabolism and reproduction. In rat and human, the distribution of ghrelin receptor GHSRs (GHSR1a and GHSR1b) has been confirmed not only in the hypothalamus and pituitary which were originally postulated as target of ghrelin but also in the testis and ovary. Expression of the preproghrelin gene in the brain and gonads was also verified, suggesting the local role (s) of ghrelin in HPG axis. Ghrelin might play a negative modulator in the secretions of hypothalamic GnRH, pituitary gonadotropins and gonadal steroids though the action on pituitary is still questionable. Recent studies suggest the involvement of ghrelin in regulation of puberty onset and possibly of menopause entry. It is now evident that ghrelin is a crucial hormomal component in 'brain-gut' axis, and is a strong candidate links between metabolism and reproduction. Opposite to that for leptin, ghrelin signaling is likely representing the 'hunger' state of body energy balance and is necessary to avoid the energy investment into reproduction which has not a top priority in maintaining homeostasis. Further researches are needed to gain a deep insight into the more precise action mechanism and role of ghrelin in reproduction, and to guarantee the successful biomedical applications.

  • PDF