DOI QR코드

DOI QR Code

Insight into the pathogensis of polycystic ovarian syndrome

  • Jung, Yong Wook (Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University College of Medicine) ;
  • Lee, Gun Ho (Department of Obstetrics and Gynecology, CHA Gumi Medical Center, CHA University College of Medicine) ;
  • Han, You Jung (Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University College of Medicine) ;
  • Cha, Dong Hyun (Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University College of Medicine)
  • Received : 2020.05.19
  • Accepted : 2020.06.07
  • Published : 2020.06.30

Abstract

Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women, which is characterized by the oligo/anovulation, hyperandrogenism (HA) and polycystic ovarian morphology which are diagnostic criteria. PCOS has diverse clinical aspects in addition to those diagnostic criteria including increased risk for cardiovascular diseases, metabolic syndrome, dyslipidemia, type 2 diabetes and impaired fertility. Because of the heterogeneity of the disease, the pathogenesis of the disease has not been elucidated yet. Therefore, there is no cure for the endocrinopathy. HA and insulin resistance (IR) has been considered two major pillars of the pathogenesis of PCOS. Recent advances in animal studies revealed the critical role of neuroendocrine abnormalities in developing PCOS. Several pathways related to neuroendocrine origin have been investigated such as hypothalamus pituitary ovarian axis, hypothalamus pituitary adrenal axis and hypothalamus pituitary adipose axis. This review summarizes the current knowledge about the role of HA and IR in developing PCOS. In addition, we review the results of recent genome wide association studies for PCOS. This new perspective improves our understanding of the role of neuroendocrine origins in PCOS and suggest a novel potential therapeutic target for the treatment of PCOS.

Keywords

References

  1. Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary syndrome. Nat Rev Dis Primers 2016;2:16057. https://doi.org/10.1038/nrdp.2016.57
  2. Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 2011;7:219-31. https://doi.org/10.1038/nrendo.2010.217
  3. Conway G, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Franks S, Gambineri A, et al.; ESE PCOS Special Interest Group. The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. Eur J Endocrinol 2014;171:P1-29. https://doi.org/10.1530/EJE-14-0253
  4. Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol 1935;29:181-91. https://doi.org/10.1016/S0002-9378(15)30642-6
  5. Zawadzki JK. Diagnostic criteria for polycystic ovary syndrome (a rational approach). Polycystic Ovary Syndrome 1992:377-84.
  6. Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al.; International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril 2018;110:364-79. https://doi.org/10.1016/j.fertnstert.2018.05.004
  7. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol 2018;14:270-84. https://doi.org/10.1038/nrendo.2018.24
  8. DeUgarte CM, Bartolucci AA, Azziz R. Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertil Steril 2005;83:1454-60. https://doi.org/10.1016/j.fertnstert.2004.11.070
  9. Dunaif A, Wu X, Lee A, Diamanti-Kandarakis E. Defects in insulin receptor signaling in vivo in the polycystic ovary syndrome (PCOS). Am J Physiol Endocrinol Metab 2001;281:E392-9. https://doi.org/10.1152/ajpendo.2001.281.2.E392
  10. Sengoku K, Tamate K, Takuma N, Yoshida T, Goishi K, Ishikawa M. The chromosomal normality of unfertilized oocytes from patients with polycystic ovarian syndrome. Hum Reprod 1997;12:474-7. https://doi.org/10.1093/humrep/12.3.474
  11. Ludwig M, Finas DF, al-Hasani S, Diedrich K, Ortmann O. Oocyte quality and treatment outcome in intracytoplasmic sperm injection cycles of polycystic ovarian syndrome patients. Hum Reprod 1999;14:354-8.
  12. Mulders AG, Laven JS, Imani B, Eijkemans MJ, Fauser BC. IVF outcome in anovulatory infertility (WHO group 2)--including polycystic ovary syndrome--following previous unsuccessful ovulation induction. Reprod Biomed Online 2003;7:50-8. https://doi.org/10.1016/S1472-6483(10)61728-2
  13. Heijnen EM, Eijkemans MJ, Hughes EG, Laven JS, Macklon NS, Fauser BC. A meta-analysis of outcomes of conventional IVF in women with polycystic ovary syndrome. Hum Reprod Update 2006;12:13-21. https://doi.org/10.1093/humupd/dmi036
  14. Weghofer A, Munne S, Chen S, Barad D, Gleicher N. Lack of association between polycystic ovary syndrome and embryonic aneuploidy. Fertil Steril 2007;88:900-5. https://doi.org/10.1016/j.fertnstert.2006.12.018
  15. Sahu B, Ozturk O, Ranierri M, Serhal P. Comparison of oocyte quality and intracytoplasmic sperm injection outcome in women with isolated polycystic ovaries or polycystic ovarian syndrome. Arch Gynecol Obstet 2008;277:239-44. https://doi.org/10.1007/s00404-007-0462-x
  16. Boomsma CM, Fauser BC, Macklon NS. Pregnancy complications in women with polycystic ovary syndrome. Semin Reprod Med 2008;26:72-84. https://doi.org/10.1055/s-2007-992927
  17. Qiao J, Feng HL. Extra- and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update 2011;17:17-33. https://doi.org/10.1093/humupd/dmq032
  18. Erickson GF, Magoffin DA, Dyer CA, Hofeditz C. The ovarian androgen producing cells: a review of structure/function relationships. Endocr Rev 1985;6:371-99. https://doi.org/10.1210/edrv-6-3-371
  19. Mahajan DK. Steroidogenesis in human polycystic ovary. Endocrinol Metab Clin North Am 1988;17:751-69. https://doi.org/10.1016/S0889-8529(18)30408-0
  20. Keefe CC, Goldman MM, Zhang K, Clarke N, Reitz RE, Welt CK. Simultaneous measurement of thirteen steroid hormones in women with polycystic ovary syndrome and control women using liquid chromatography-tandem mass spectrometry. PLoS One 2014;9:e93805. https://doi.org/10.1371/journal.pone.0093805
  21. Palomba S, Falbo A, Chiossi G, Muscogiuri G, Fornaciari E, Orio F, et al. Lipid profile in nonobese pregnant women with polycystic ovary syndrome: a prospective controlled clinical study. Steroids 2014;88:36-43. https://doi.org/10.1016/j.steroids.2014.06.005
  22. Nelson VL, Legro RS, Strauss JF 3rd, McAllister JM. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol Endocrinol 1999;13:946-57. https://doi.org/10.1210/mend.13.6.0311
  23. Burt Solorzano CM, Beller JP, Abshire MY, Collins JS, McCartney CR, Marshall JC. Neuroendocrine dysfunction in polycystic ovary syndrome. Steroids 2012;77:332-7. https://doi.org/10.1016/j.steroids.2011.12.007
  24. Rojas J, Chavez M, Olivar L, Rojas M, Morillo J, Mejias J, et al. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth. Int J Reprod Med 2014;2014:719050. https://doi.org/10.1155/2014/719050
  25. Marks LS. 5alpha-reductase: history and clinical importance. Rev Urol 2004;6 Suppl 9(Suppl 9):S11-21.
  26. Torchen LC, Idkowiak J, Fogel NR, O'Neil DM, Shackleton CH, Arlt W, et al. Evidence for increased $5{\alpha}$-reductase activity during early childhood in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2016;101:2069-75. https://doi.org/10.1210/jc.2015-3926
  27. Boda D, Paun D, Diaconeasa A. Evaluation of 5-alpha reductase activity on cultured fibroblast in patients with hyperandrogenemia. Rom J Intern Med 2009;47:67-73.
  28. Magoffin DA. Ovarian enzyme activities in women with polycystic ovary syndrome. Fertil Steril 2006;86 Suppl 1:S9-11. https://doi.org/10.1016/j.fertnstert.2006.03.015
  29. Walters KA, Handelsman DJ. Role of androgens in the ovary. Mol Cell Endocrinol 2018;465:36-47. https://doi.org/10.1016/j.mce.2017.06.026
  30. Brock O, De Mees C, Bakker J. Hypothalamic expression of oestrogen receptor $\alpha$ and androgen receptor is sex-, age- and region-dependent in mice. J Neuroendocrinol 2015;27:264-76. https://doi.org/10.1111/jne.12258
  31. Mogi K, Takanashi H, Nagasawa M, Kikusui T. Sex differences in spatiotemporal expression of AR, $ER{\alpha}$, and $ER{\beta}$ mRNA in the perinatal mouse brain. Neurosci Lett 2015;584:88-92. https://doi.org/10.1016/j.neulet.2014.10.028
  32. Hu YC, Wang PH, Yeh S, Wang RS, Xie C, Xu Q, et al. Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc Natl Acad Sci U S A 2004;101:11209-14. https://doi.org/10.1073/pnas.0404372101
  33. Ma Y, Andrisse S, Chen Y, Childress S, Xue P, Wang Z, et al. Androgen receptor in the ovary theca cells plays a critical role in androgeninduced reproductive dysfunction. Endocrinology 2017;158:98-108.
  34. Shiina H, Matsumoto T, Sato T, Igarashi K, Miyamoto J, Takemasa S, et al. Premature ovarian failure in androgen receptor-deficient mice. Proc Natl Acad Sci U S A 2006;103:224-9. https://doi.org/10.1073/pnas.0506736102
  35. Yeh S, Tsai MY, Xu Q, Mu XM, Lardy H, Huang KE, et al. Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci U S A 2002;99:13498-503. https://doi.org/10.1073/pnas.212474399
  36. Paradisi R, Fabbri R, Battaglia C, Venturoli S. Ovulatory effects of flutamide in the polycystic ovary syndrome. Gynecol Endocrinol 2013;29:391-5. https://doi.org/10.3109/09513590.2012.754876
  37. Eagleson CA, Gingrich MB, Pastor CL, Arora TK, Burt CM, Evans WS, et al. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 2000;85:4047-52. https://doi.org/10.1210/jcem.85.11.6992
  38. Moghetti P, Tosi F, Tosti A, Negri C, Misciali C, Perrone F, et al. Comparison of spironolactone, flutamide, and finasteride efficacy in the treatment of hirsutism: a randomized, double blind, placebocontrolled trial. J Clin Endocrinol Metab 2000;85:89-94. https://doi.org/10.1210/jcem.85.1.6245
  39. Venturoli S, Marescalchi O, Colombo FM, Macrelli S, Ravaioli B, Bagnoli A, et al. A prospective randomized trial comparing low dose flutamide, finasteride, ketoconazole, and cyproterone acetate-estrogen regimens in the treatment of hirsutism. J Clin Endocrinol Metab 1999;84:1304-10. https://doi.org/10.1210/jcem.84.4.5591
  40. Calaf J, Lopez E, Millet A, Alcaniz J, Fortuny A, Vidal O, et al.; Spanish Working Group for Hirsutism. Long-term efficacy and tolerability of flutamide combined with oral contraception in moderate to severe hirsutism: a 12-month, double-blind, parallel clinical trial. J Clin Endocrinol Metab 2007;92:3446-52. https://doi.org/10.1210/jc.2006-2798
  41. Baculescu N. The role of androgen receptor activity mediated by the CAG repeat polymorphism in the pathogenesis of PCOS. J Med Life 2013;6:18-25.
  42. Borgbo T, Macek M Sr, Chrudimska J, Jeppesen JV, Hansen LL, Andersen CY. Size matters: associations between the androgen receptor CAG repeat length and the intrafollicular hormone milieu. Mol Cell Endocrinol 2016;419:12-7. https://doi.org/10.1016/j.mce.2015.09.015
  43. Skrgatic L, Baldani DP, Cerne JZ, Ferk P, Gersak K. CAG repeat polymorphism in androgen receptor gene is not directly associated with polycystic ovary syndrome but influences serum testosterone levels. J Steroid Biochem Mol Biol 2012;128:107-12. https://doi.org/10.1016/j.jsbmb.2011.11.006
  44. Jakimiuk AJ, Weitsman SR, Magoffin DA. 5alpha-reductase activity in women with polycystic ovary syndrome. J Clin Endocrinol Metab 1999;84:2414-8. https://doi.org/10.1210/jcem.84.7.5863
  45. Skalba P, Dabkowska-Huc A, Kazimierczak W, Samojedny A, Samojedny MP, Chelmicki Z. Content of 5-alpha-reductase (type 1 and type 2) mRNA in dermal papillae from the lower abdominal region in women with hirsutism. Clin Exp Dermatol 2006;31:564-70. https://doi.org/10.1111/j.1365-2230.2006.02146.x
  46. Vassiliadi DA, Barber TM, Hughes BA, McCarthy MI, Wass JA, Franks S, et al. Increased 5 alpha-reductase activity and adrenocortical drive in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2009;94:3558-66. https://doi.org/10.1210/jc.2009-0837
  47. Walters KA. Role of androgens in normal and pathological ovarian function. Reproduction 2015;149:R193-218. https://doi.org/10.1530/REP-14-0517
  48. Padmanabhan V, Veiga-Lopez A. Sheep models of polycystic ovary syndrome phenotype. Mol Cell Endocrinol 2013;373:8-20. https://doi.org/10.1016/j.mce.2012.10.005
  49. Abbott DH, Nicol LE, Levine JE, Xu N, Goodarzi MO, Dumesic DA. Nonhuman primate models of polycystic ovary syndrome. Mol Cell Endocrinol 2013;373:21-8. https://doi.org/10.1016/j.mce.2013.01.013
  50. Balen AH, Conway GS, Kaltsas G, Techatrasak K, Manning PJ, West C, et al. Polycystic ovary syndrome: the spectrum of the disorder in 1741 patients. Hum Reprod 1995;10:2107-11. https://doi.org/10.1093/oxfordjournals.humrep.a136243
  51. Kiddy DS, Hamilton-Fairley D, Bush A, Short F, Anyaoku V, Reed MJ, et al. Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 1992;36:105-11. https://doi.org/10.1111/j.1365-2265.1992.tb02909.x
  52. Yildizhan B, Anik Ilhan G, Pekin T. The impact of insulin resistance on clinical, hormonal and metabolic parameters in lean women with polycystic ovary syndrome. J Obstet Gynaecol 2016;36:893-6. https://doi.org/10.3109/01443615.2016.1168376
  53. Dunaif A, Segal KR, Futterweit W, Dobrjansky A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 1989;38:1165-74. https://doi.org/10.2337/diab.38.9.1165
  54. Venkatesan AM, Dunaif A, Corbould A. Insulin resistance in polycystic ovary syndrome: progress and paradoxes. Recent Prog Horm Res 2001;56:295-308. https://doi.org/10.1210/rp.56.1.295
  55. Bergh C, Carlsson B, Olsson JH, Selleskog U, Hillensjo T. Regulation of androgen production in cultured human thecal cells by insulin-like growth factor I and insulin. Fertil Steril 1993;59:323-31. https://doi.org/10.1016/S0015-0282(16)55675-1
  56. Cara JF, Rosenfield RL. Insulin-like growth factor I and insulin potentiate luteinizing hormone-induced androgen synthesis by rat ovarian thecal-interstitial cells. Endocrinology 1988;123:733-9. https://doi.org/10.1210/endo-123-2-733
  57. Nahum R, Thong KJ, Hillier SG. Metabolic regulation of androgen production by human thecal cells in vitro. Hum Reprod 1995;10:75-81. https://doi.org/10.1093/humrep/10.1.75
  58. Munir I, Yen HW, Geller DH, Torbati D, Bierden RM, Weitsman SR, et al. Insulin augmentation of 17alpha-hydroxylase activity is mediated by phosphatidyl inositol 3-kinase but not extracellular signalregulated kinase-1/2 in human ovarian theca cells. Endocrinology 2004;145:175-83. https://doi.org/10.1210/en.2003-0329
  59. Kristiansen SB, Endoh A, Casson PR, Buster JE, Hornsby PJ. Induction of steroidogenic enzyme genes by insulin and IGF-I in cultured adult human adrenocortical cells. Steroids 1997;62:258-65. https://doi.org/10.1016/S0039-128X(96)00223-1
  60. Rittmaster RS, Deshwal N, Lehman L. The role of adrenal hyperandrogenism, insulin resistance, and obesity in the pathogenesis of polycystic ovarian syndrome. J Clin Endocrinol Metab 1993;76:1295-300. https://doi.org/10.1210/jc.76.5.1295
  61. Moghetti P, Castello R, Negri C, Tosi F, Spiazzi GG, Brun E, et al. Insulin infusion amplifies 17 alpha-hydroxycorticosteroid intermediates response to adrenocorticotropin in hyperandrogenic women: apparent relative impairment of 17,20-lyase activity. J Clin Endocrinol Metab 1996;81:881-6. https://doi.org/10.1210/jcem.81.3.8772544
  62. Rodin A, Thakkar H, Taylor N, Clayton R. Hyperandrogenism in polycystic ovary syndrome. Evidence of dysregulation of 11 betahydroxysteroid dehydrogenase. N Engl J Med 1994;330:460-5. https://doi.org/10.1056/NEJM199402173300703
  63. Hammond GL, Wu TS, Simard M. Evolving utility of sex hormonebinding globulin measurements in clinical medicine. Curr Opin Endocrinol Diabetes Obes 2012;19:183-9. https://doi.org/10.1097/MED.0b013e328353732f
  64. Zhu JL, Chen Z, Feng WJ, Long SL, Mo ZC. Sex hormone-binding globulin and polycystic ovary syndrome. Clin Chim Acta 2019;499:142-8. https://doi.org/10.1016/j.cca.2019.09.010
  65. Hammond GL. Diverse roles for sex hormone-binding globulin in reproduction. Biol Reprod 2011;85:431-41. https://doi.org/10.1095/biolreprod.111.092593
  66. Janne M, Hammond GL. Hepatocyte nuclear factor-4 controls transcription from a TATA-less human sex hormone-binding globulin gene promoter. J Biol Chem 1998;273:34105-14. https://doi.org/10.1074/jbc.273.51.34105
  67. Xie X, Liao H, Dang H, Pang W, Guan Y, Wang X, et al. Down-regulation of hepatic HNF4alpha gene expression during hyperinsulinemia via SREBPs. Mol Endocrinol 2009;23:434-43. https://doi.org/10.1210/me.2007-0531
  68. Caldwell ASL, Edwards MC, Desai R, Jimenez M, Gilchrist RB, Handelsman DJ, et al. Neuroendocrine androgen action is a key extraovarian mediator in the development of polycystic ovary syndrome. Proc Natl Acad Sci U S A 2017;114:E3334-43. https://doi.org/10.1073/pnas.1616467114
  69. Antoniou-Tsigkos A, Zapanti E, Ghizzoni L, Mastorakos G. Adrenal androgens. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, eds. Endotext. South Dartmouth: MDText.com, Inc., 2000.
  70. Luque-Ramirez M, Escobar-Morreale HF. Adrenal hyperandrogenism and polycystic ovary syndrome. Curr Pharm Des 2016;22:5588-602. https://doi.org/10.2174/1381612822666160720150625
  71. Moran C, Reyna R, Boots LS, Azziz R. Adrenocortical hyperresponsiveness to corticotropin in polycystic ovary syndrome patients with adrenal androgen excess. Fertil Steril 2004;81:126-31. https://doi.org/10.1016/j.fertnstert.2003.07.008
  72. Zhou R, Bird IM, Dumesic DA, Abbott DH. Adrenal hyperandrogenism is induced by fetal androgen excess in a rhesus monkey model of polycystic ovary syndrome. J Clin Endocrinol Metab 2005;90:6630-7. https://doi.org/10.1210/jc.2005-0691
  73. Abbott DH, Tarantal AF, Dumesic DA. Fetal, infant, adolescent and adult phenotypes of polycystic ovary syndrome in prenatally androgenized female rhesus monkeys. Am J Primatol 2009;71:776-84. https://doi.org/10.1002/ajp.20679
  74. Zhou R, Bruns CM, Bird IM, Kemnitz JW, Goodfriend TL, Dumesic DA, et al. Pioglitazone improves insulin action and normalizes menstrual cycles in a majority of prenatally androgenized female rhesus monkeys. Reprod Toxicol 2007;23:438-48. https://doi.org/10.1016/j.reprotox.2006.12.009
  75. McCartney CR, Eagleson CA, Marshall JC. Regulation of gonadotropin secretion: implications for polycystic ovary syndrome. Semin Reprod Med 2002;20:317-26. https://doi.org/10.1055/s-2002-36706
  76. Abbott DH, Levine JE, Dumesic DA. Translational insight into polycystic ovary syndrome (PCOS) from female monkeys with PCOS-like traits. Curr Pharm Des 2016;22:5625-33. https://doi.org/10.2174/1381612822666160715133437
  77. Moore AM, Prescott M, Marshall CJ, Yip SH, Campbell RE. Enhancement of a robust arcuate GABAergic input to gonadotropin-releasing hormone neurons in a model of polycystic ovarian syndrome. Proc Natl Acad Sci U S A 2015;112:596-601. https://doi.org/10.1073/pnas.1415038112
  78. Pastor CL, Griffin-Korf ML, Aloi JA, Evans WS, Marshall JC. Polycystic ovary syndrome: evidence for reduced sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 1998;83:582-90. https://doi.org/10.1210/jcem.83.2.4604
  79. Sullivan SD, Moenter SM. Prenatal androgens alter GABAergic drive to gonadotropin-releasing hormone neurons: implications for a common fertility disorder. Proc Natl Acad Sci U S A 2004;101:7129-34. https://doi.org/10.1073/pnas.0308058101
  80. Moore AM, Campbell RE. The neuroendocrine genesis of polycystic ovary syndrome: a role for arcuate nucleus GABA neurons. J Steroid Biochem Mol Biol 2016;160:106-17. https://doi.org/10.1016/j.jsbmb.2015.10.002
  81. Cheng G, Coolen LM, Padmanabhan V, Goodman RL, Lehman MN. The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep. Endocrinology 2010;151:301-11. https://doi.org/10.1210/en.2009-0541
  82. Vazquez-Vela ME, Torres N, Tovar AR. White adipose tissue as endocrine organ and its role in obesity. Arch Med Res 2008;39:715-28. https://doi.org/10.1016/j.arcmed.2008.09.005
  83. Nohara K, Laque A, Allard C, Munzberg H, Mauvais-Jarvis F. Central mechanisms of adiposity in adult female mice with androgen excess. Obesity (Silver Spring) 2014;22:1477-84. https://doi.org/10.1002/oby.20719
  84. Dumesic DA, Akopians AL, Madrigal VK, Ramirez E, Margolis DJ, Sarma MK, et al. Hyperandrogenism accompanies increased intraabdominal fat storage in normal weight polycystic ovary syndrome women. J Clin Endocrinol Metab 2016;101:4178-88. https://doi.org/10.1210/jc.2016-2586
  85. Keller E, Chazenbalk GD, Aguilera P, Madrigal V, Grogan T, Elashoff D, et al. Impaired preadipocyte differentiation into adipocytes in subcutaneous abdominal adipose of PCOS-like female rhesus monkeys. Endocrinology 2014;155:2696-703. https://doi.org/10.1210/en.2014-1050
  86. Cardoso RC, Veiga-Lopez A, Moeller J, Beckett E, Pease A, Keller E, et al. Developmental programming: impact of gestational steroid and metabolic milieus on adiposity and insulin sensitivity in prenatal testosterone-treated female sheep. Endocrinology 2016;157:522-35. https://doi.org/10.1210/en.2015-1565
  87. Manneras-Holm L, Leonhardt H, Kullberg J, Jennische E, Oden A, Holm G, et al. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J Clin Endocrinol Metab 2011;96:E304-11. https://doi.org/10.1210/jc.2010-1290
  88. Puttabyatappa M, Padmanabhan V. Ovarian and extra-ovarian mediators in the development of polycystic ovary syndrome. J Mol Endocrinol 2018;61:R161-84. https://doi.org/10.1530/JME-18-0079
  89. Benrick A, Chanclon B, Micallef P, Wu Y, Hadi L, Shelton JM, et al. Adiponectin protects against development of metabolic disturbances in a PCOS mouse model. Proc Natl Acad Sci U S A 2017;114:E7187-96. https://doi.org/10.1073/pnas.1708854114
  90. Chen X, Jia X, Qiao J, Guan Y, Kang J. Adipokines in reproductive function: a link between obesity and polycystic ovary syndrome. J Mol Endocrinol 2013;50:R21-37. https://doi.org/10.1530/JME-12-0247
  91. Barber TM, Franks S. Adipocyte biology in polycystic ovary syndrome. Mol Cell Endocrinol 2013;373:68-76. https://doi.org/10.1016/j.mce.2012.10.010
  92. Legro RS, Driscoll D, Strauss JF 3rd, Fox J, Dunaif A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc Natl Acad Sci U S A 1998;95:14956-60. https://doi.org/10.1073/pnas.95.25.14956
  93. Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI. Heritability of polycystic ovary syndrome in a Dutch twin-family study. J Clin Endocrinol Metab 2006;91:2100-4. https://doi.org/10.1210/jc.2005-1494
  94. Kahsar-Miller M, Azziz R. The development of the polycystic ovary syndrome: family history as a risk factor. Trends Endocrinol Metab 1998;9:55-8. https://doi.org/10.1016/S1043-2760(98)00021-6
  95. Cooper HE, Spellacy WN, Prem KA, Cohen WD. Hereditary factors in the Stein-Leventhal syndrome. Am J Obstet Gynecol 1968;100:371-87. https://doi.org/10.1016/S0002-9378(15)33704-2
  96. Chen ZJ, Zhao H, He L, Shi Y, Qin Y, Shi Y, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet 2011;43:55-9. https://doi.org/10.1038/ng.732
  97. Shi Y, Zhao H, Shi Y, Cao Y, Yang D, Li Z, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet 2012;44:1020-5. https://doi.org/10.1038/ng.2384
  98. Mutharasan P, Galdones E, Penalver Bernabe B, Garcia OA, Jafari N, Shea LD, et al. Evidence for chromosome 2p16.3 polycystic ovary syndrome susceptibility locus in affected women of European ancestry. J Clin Endocrinol Metab 2013;98:E185-90. https://doi.org/10.1210/jc.2012-2471
  99. Day FR, Hinds DA, Tung JY, Stolk L, Styrkarsdottir U, Saxena R, et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat Commun 2015;6:8464. https://doi.org/10.1038/ncomms9464
  100. Hayes MG, Urbanek M, Ehrmann DA, Armstrong LL, Lee JY, Sisk R, et al.; Reproductive Medicine Network. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat Commun 2015;6:7502. https://doi.org/10.1038/ncomms8502